
Violin: A Framework for Extensible Block-level Storage

Michail D. Flouris†
Department of Computer Science,

University of Toronto,
Toronto, Ontario M5S 3G4, Canada

flouris@cs.toronto.edu

Angelos Bilas‡
Institute of Computer Science (ICS)

Foundation for Research and Technology - Hellas
P.O.Box 1385, Heraklion, GR 71110, Greece

bilas@ics.forth.gr

Abstract

In this work we propose Violin, a virtualization framework that
allows easy extensions of block-level storage stacks. Violin al-
lows (i) developers to provide new virtualization functions and
(ii) storage administrators to combine these functions in storage
hierarchies with rich semantics. Violin makes it easy to develop
such new functions by providing support for (i) hierarchy aware-
ness and arbitrary mapping of blocks between virtual devices, (ii)
explicit control over both the request and completion path of I/O
requests, and (iii) persistent metadata management.

To demonstrate the effectiveness of our approach we evaluate
Violin in three ways: (i) We loosely compare the complexity of
providing new virtual modules in Violin with the traditional ap-
proach of writing monolithic drivers. In many cases, adding new
modules is a matter of recompiling existing user-level code that
provides the required functionality. (ii) We show how simple mod-
ules in Violin can be combined in more complex hierarchies. We
demonstrate hierarchies with advanced virtualization semantics
that are difficult to implement with monolithic drivers. (iii) We
use various benchmarks to examine the overheads introduced by
Violin in the common I/O path. We find that Violin modules per-
form within 10% of the corresponding monolithic Linux drivers.

1. Introduction

Storage is becoming an increasingly important issue as more and
more data need to be stored either for archival or online processing
purposes. As the amount of storage required increases, scalable
storage systems provide a means of consolidating all storage in
a single system and increasing storage efficiency. However, stor-
age consolidation leads to increased requirements for “flexibility”
that will be able to serve multiple applications and their diverse
needs. This flexibility refers to both storage management and
application access issues and is usually provided through virtu-
alization techniques: Administrators and applications see various

†Work partly performed while at the Institute of Computer
Science (ICS), Foundation of Research and Technology – Hellas
(FORTH), P.O. Box 1385, Heraklion, GR 71110, Greece.

‡Also, with the Department of Computer Science, University
of Crete, P.O. Box 2208, Heraklion, GR 71409, Greece.

types of virtual volumes that are mapped to physical devices but
offer higher-level semantics through virtualization mechanisms.

The quality of virtualization mechanisms provided by a stor-
age system affects storage management complexity and storage
efficiency, both of which are important problems of modern stor-
age systems. Storage virtualization may occur either at the filesys-
tem or at the block level. Although both approaches are currently
being used, our work addresses virtualization issues at the block-
level. Storage virtualization at the filesystem level has mainly
appeared in the form of extensible filesystems [11, 24, 30, 32].

We argue that the importance of block-level virtualization is
increasing for two reasons. First, certain virtualization functions,
such as compression or encryption, may be simpler and more ef-
ficient to provide on unstructured fixed data blocks rather than
variable-size files. Second, block-level storage systems are evolv-
ing from simple disks and fixed controllers to powerful storage
nodes [1, 9, 10] that offer block-level storage to multiple applica-
tions over a storage area network [23, 22]. In such systems, block-
level storage extensions can exploit the processing capacity of the
storage nodes, where filesystems (running on the servers) cannot.
For these reasons and over time, with the evolution of storage
technology a number of virtualization features, e.g. volume man-
agement functions, RAID, snapshots, moved from higher system
layers to the block level.

Today’s block-level storage systems provide flexibility in man-
aging and accessing storage through I/O drivers (modules) in the
I/O stack or through the filesystem. For instance, Linux-based
storage systems use drivers, such as MD [2] and LVM [25] to
support RAID and logical volume management functions. How-
ever, this flexibility is limited by the fact that current I/O stacks
require the use of monolithic I/O drivers that are both complex
to develop and hard to combine. As a result, current block-level
systems offer predefined virtualization semantics, such as virtual
volumes mapped to an aggregation of disks or RAID levels. In
this category belong both research prototypes [2, 6, 8, 18, 25]
and commercial products [4, 5, 12, 27, 28]. In all these cases
the storage administrator can switch on or off various features at
the volume level, but cannot extend them.

In this work we address this problem by providing a kernel-
level framework for (i) building and (ii) combining virtualization
functions. We propose, implement, and evaluate Violin (Virtual
I/O Layer INtegration), a virtual I/O framework for commodity
storage nodes that replaces the current block-level I/O stack with
an improved I/O hierarchy that allows for (i) easy extension of the

101

iSCSI

Violin
FS

iSCSI

iS
C

SI Violin

St
or

ag
e

N
od

e
N

Violin

iS
C

SI

St
or

ag
e

N
od

e
A

Application

Application Server

...

...

Figure 1. Violin in a distributed environment.

storage hierarchy with new mechanisms and (ii) flexible combin-
ing of these mechanisms to create modular hierarchies with rich
semantics.

Although our approach shares similarities with work in mod-
ular and extensible filesystems [11, 24, 30, 32] and network pro-
tocol stacks [17, 19, 20, 26], existing techniques from these areas
are not directly applicable to block-level storage virtualization.
A fundamental difference from network stacks is that the latter
are essentially stateless (except for configuration information) and
packets are ephemeral, whereas storage blocks and their associ-
ated metadata need to persist. Compared to extensible filesys-
tems, block-level storage systems operate at a different granular-
ity, with no information about the relationships of blocks. Thus,
metadata need to be maintained at the block level resulting poten-
tially in large memory overhead. Moreover, block I/O operations
cannot be associated precisely with each other, limiting possible
optimizations.

The main contributions of Violin are: (i) it significantly re-
duces the effort to introduce new functionality in the block I/O
stack of a commodity storage node and (ii) provides the ability
to combine simple virtualization functions into hierarchies with
semantics that can satisfy diverse application needs. Violin pro-
vides virtual devices with full access to both the request and com-
pletion paths of I/Os allowing for easy implementation of syn-
chronous and asynchronous I/O. Supporting asynchronous I/O
is important for performance reasons, but also raises significant
challenges when implemented in real systems. Also, Violin deals
with metadata persistence for the full storage hierarchy, offloading
the related complexity from individual virtual devices. To achieve
flexibility, Violin allows storage administrators to create arbitrary,
acyclic graphs of virtual devices, each adding to the functionality
of the successor devices in the graph. In each hierarchy, blocks
of each virtual device can be mapped in arbitrary ways to the suc-
cessor devices, enabling advanced storage functions, such as dy-
namic relocation of blocks.

Systems such as Violin can be combined with standard storage
access protocols, such as iSCSI, to build large-scale distributed
volumes. Figure 1 shows a system with multiple storage nodes
that provide a common view of the physical storage in a cluster.
We believe that future, large-scale storage systems will be built in
this manner to satisfy application needs at a cost-efficient manner.

We implement Violin as a block device driver under Linux. To
demonstrate the effectiveness of our approach in extending the I/O
hierarchy we implement various virtual modules as dynamically

Disk Device Drivers

Disks

Block I/OFilesystem
Buffer Cache Raw I/O

User Space

Kernel Space

kernel m
odule

V
iolin

Filesystem
Apps

Block I/O
Apps

Raw I/O Apps

Violin context

User extensions

Kernel components Modules
Violin

LXT

Persistent
Metadata

High−level
I/O API

Figure 2. Violin in the operating system context.

loadable kernel devices that bind to Violin’s API. We also provide
simple user level tools that are able to perform on-line fine-grain
configuration, control, and monitoring of arbitrary hierarchies of
instances of these modules.

We evaluate the effectiveness of our approach in three areas:
ease of development, flexibility, and performance. In the first
area we are able to quickly prototype modules for RAID lev-
els, versioning, partitioning and aggregation, MD5 hashing, mi-
gration and encryption. In many cases, writing a new module
is just a matter of recompiling existing user-level library code.
Overall, using Violin encourages the development of simple vir-
tual modules that can later be combined to more complex hierar-
chies. Regarding flexibility, we are able to easily configure I/O
hierarchies that combine the functionality of multiple layers and
provide complex high-level semantics that are difficult to achieve
otherwise. Finally, we use Postmark and IOmeter to examine the
overhead that Violin introduces over traditional block-level I/O hi-
erarchies. We find that overall, internal modules perform within
10% (throughput) of their native Linux block-driver counterparts.

The rest of the paper is organized as follows. Sections 2
and 3 present the design and implementation of Violin. Section 4
presents our results, while Section 5 discusses related work. Fi-
nally, Section 6 discusses limitations and future work and Sec-
tion 7 draws our conclusions.

2. System Architecture

Violin is a virtual I/O framework that provides (i) support for easy
and incremental extensions to I/O hierarchies and (ii) a highly
configurable virtualization stack that combines basic storage lay-
ers in rich virtual I/O hierarchies. Violin’s location in the kernel
context is shown in Figure 2, illustrating the I/O path from the
user applications to the disks. There are three basic components
in the architecture of Violin:

1. High-level virtualization semantics and mappings.

2. Simple control over the I/O request path.

3. Metadata state persistence.

Next we discuss each of these components in detail.

2.1. Virtualization Semantics

A virtual storage hierarchy is generally represented by a directed
acyclic graph (DAG). In this graph, the vertices or nodes repre-

102

Source Source Source

Input Capacities: Output Capacities:

Sink SinkSinkSink Sink

In
te

rn
al

 D
ev

ic
es

 (
A

−
M

)
Hierarchy A Hierarchy B

A B C D

E

F

G

H

I J

M

K

L

Figure 3. Violin’s virtual device graph.

sent virtual devices. The directed edges between nodes signify
device dependencies and control flow through I/O requests. Con-
trol in Violin flows from higher to lower layers. This arises from
the traditional view of the block-level device as a dumb passive
device. Each virtual device in the DAG is operated by a virtu-
alization module that implements desired functionality. Virtual
devices that provide the same functionality are handled by differ-
ent instances of the same module. From now on, we will use the
terms module and device interchangeably.

Figure 3 shows an example of such a device graph. Graph
nodes are represented with horizontal bars illustrating the map-
pings of their address spaces and they are connected with directed
vertices. There are three kinds of nodes and accordingly three
kinds of I/O modules in the architecture:

• Source nodes that do not have incoming edges and are top-
level devices that initiate I/O requests in the storage hierarchy.
The requests are initiated by external kernel components such
as file systems or other block-level storage applications. Each
of the source devices has an external name, e.g. an entry in
/dev for Unix systems.

• Sink nodes that do not have outgoing edges and correspond to
bottom-level virtual devices. Sink nodes sit on top of other
kernel block-level drivers, such as hardware disk drivers and,
in practice, are the final recipients of I/O requests.

• Internal nodes that have both incoming and outgoing edges
and provide virtualization functions. These nodes are not vis-
ible to external drivers, kernel components, or user applica-
tions.

Violin uses the above generic DAG representation to model its
hierarchies. A virtual hierarchy is defined as a set of connected
nodes in the device graph that do not have links to nodes out-
side the hierarchy. A hierarchy within a device graph is a self-
contained sub-graph that can be configured and managed inde-
pendently of other hierarchies in the same system. Hierarchies in

0 1 2 3 4 5 6 7 8 ...
LXT0 1 43 6 87 ...0 1 2 3 4 5 6 7 8 Input Address Space

Output Address Space

Figure 4. The LXT address translation table.

Violin are objects that are explicitly created before adding virtual
devices (nodes).

To manage devices and hierarchies, users may specify the fol-
lowing operations on the device graph:

• Create a new internal, source, or sink node and link it to the ap-
propriate nodes, depending on its type. The DAG is created in
a bottom-up fashion to guarantee that an I/O sink will always
exist for any I/O path.

• Delete a node from the graph. A node may be deleted only if
its input devices have been deleted (top-down).

• Change an edge in the graph, i.e. remap a device.

Violin checks the integrity of a hierarchy at creation time and
each time it is reconstructed. Checking for integrity includes var-
ious simple rules, such as the presence of cycles in the hierarchy
graph and lack of input or output edges in internal nodes. Creating
hierarchies and checking dependencies reduces the complexity of
each Violin module.

A hierarchy in Violin is constructed with simple user-level
tools implementing the above graph operations and linking the
source and sink nodes to external OS block devices. Currently,
the storage administrator has to specify the exact order in which
virtual devices will be combined. The user-level tools can also be
used online, during system operation to modify or extend I/O hier-
archies. However, it is the administrator’s responsibility to main-
tain data consistency while performing online structural changes
to a hierarchy.

2.1.1. Dynamic Block Mapping and Allocation Nodes in a
hierarchy graph do not simply show output dependencies from
one device to another but rather map between block address
spaces of these devices. As can be seen in Figure 3, a storage
device in the system represents a specific storage capacity and a
block address space, while the I/O path in the graph represents a
series of translations between block address spaces. Violin pro-
vides transparent and persistent translation between device ad-
dress spaces in virtual hierarchies.

Devices in a virtual hierarchy may have widely different re-
quirements for mapping semantics. Some devices, such as RAID-
0, use simple mapping semantics. In RAID-0 blocks are mapped
statically between the input and output devices. There are, how-
ever, modules that require more complex mappings. For instance,
providing snapshots at the block level, requires arbitrary trans-
lations and dynamic block remappings [7]. Similarly, volume
managers [25] require arbitrary block mappings to support vol-
ume resizing and data migration between devices. Another use
of arbitrary mappings is to change the device allocation policy,
for instance, to a log-structured policy. The Logical Disk [3] uses
dynamic block remapping for this purpose.

103

err_code vl_alloc_lxt(_device_t *dev);
err_code vl_alloc_pxb(_device_t *dev);
int get/set_lxt_bool_flag_on/off(int extent,

VL_FLAGMASK_TYPE flagmask);
int vl_phys_address_get/set(int extent);
int vl_phys_extent_alloc(int alloc_policy);
void vl_phys_extent_free(int extent);

Figure 5. Violin API for LXT and PXB data struc-
tures.

Violin supports dynamic block mapping through a logical-to-
physical block address translation table (LXT). Figure 4 shows an
example of such an LXT mapping between the input and output
address spaces of a device. Dynamic block mapping capabili-
ties give to a virtual device the freedom to use its own disk space
management mechanisms and policies, without changing the se-
mantics of its input devices, higher in the I/O stack.

Additionally, Violin provides free-block allocation and man-
agement facilities. It offers a variety of disk allocation schemes,
including first-available, log-structured, and closer-to-last-block,
all of which use either a free list (FL) or a physical block bitmap
(PXB) to distinguish between occupied and free physical blocks.
However, since modules may need their own space allocation al-
gorithm, Violin allows module code to directly access the PXB
data structure as well as its persistent metadata objects (explained
below). In this case, however, code and complexity increase for
the module developer.

The API for dynamic block mapping and allocation is
shown in Figure 5. Since the LXT and the PXB are addressed
in extents (explained below), the library functions take as
arguments an extent number, which addresses an LXT or PXB
entry. Functions get/set lxt bool flag on/off()
handle binary flag values that can be maintained on the
LXT for the extents of a device. This is useful for mod-
ules that tag extents according to their properties (e.g.
clean/dirty). Functions vl phys address get/set()
handle the physical addresses stored on the LXT en-
tries. Functions vl phys extent alloc() and
vl phys extent free() operate on the PXB bitmap.
The first routine locates a free physical block (according to an
algorithm) and marks it on the PXB, while the second frees a
used data block and clears its PXB bit.

The LXT and PXB data structures are allocated as persistent
objects using the persistent metadata calls we describe in Sec-
tion 2.3 and their persistence is handled automatically by Violin
similarly to the rest of the hierarchy metadata.

An issue with supporting arbitrary block mappings is the size
of LXT and FL or PXB persistent objects, which can become
quite large, depending on the capacity and block size of a device.
Keeping such objects in memory can increase memory footprint
substantially. Violin offers two solutions: First, it supports an in-
ternal block size (“extent size”) for its devices, which is indepen-
dent of the OS device block size. The extent size, in other words,
is a fixed logical block for the device and is specified when a de-
vice is created. Increasing the extent size can greatly reduce the
size of the LXT. For example, the LXT of a 1 TByte device with
32-bit extent addressing and 4 KByte extent size would require

SourceSource

<

<

<

<

Fwd Path
Return Path

A B

SinkSink

A B

SinkSink

C

D

E

F

Fwd to B

Fwd to D

Fwd to E

C

F

E

D

Fwd Path

Return Path

Fwd to D

Fwd to B

Fwd to E

Fwd
To Sink

>

<

<

<Tag Request
Complete

Figure 6. Example of request flows (dashed lines)
through devices. Forward paths are directed down-
wards, while return paths upwards.

about 1 GByte of memory. By increasing the extent size to 32
KBytes, we achieve a reduction of the required metadata to 128
MBytes. Second, Violin provides the capability to explicitly load
and unload persistent metadata to and from memory, as explained
in Section 2.3.

2.2. Violin I/O Request Path

The second significant aspect of Violin is how the I/O request path
works. Violin is not only reentrant but also supports synchronous
and asynchronous I/O requests. I/O requests never block in the
framework, unless a driver module has explicitly requested it.
Moreover, since Violin is reentrant, it runs in the issuer’s con-
text for each request issued from the kernel. Thus, many requests
can proceed concurrently in the framework, each in a different
context.

A generic virtual storage framework must support two types
of I/O requests:

• External requests are initiated by the kernel. They enter the
framework through the source devices (nodes), traverse a hi-
erarchy through internal nodes usually until they reach a sink
node and then return back up the same path to the top of the
hierarchy.

• Internal requests are generated from internal devices as a re-
sponse to an external request. Consider for example a RAID-5
module that needs to write parity blocks. The RAID-5 device
generates an internal write request to the parity device. Inter-
nal requests are indistinguishable from external ones for all but
the generating module and are handled in the same manner.

I/O requests in Violin move from source to sink nodes through
some path in a virtual hierarchy, as shown in Figure 6. Sink de-
vices are connected to external block devices in the kernel, so
after a request reaches a sink device it is forwarded to an external

104

device. When multiple output nodes exist, routing decisions are
taken at every node, according to its mapping semantics. Virtual
devices can control requests beyond simple forwarding. When a
device receives an I/O request it can make four control decisions
and set corresponding control tags on a request:

• Error Tag indicates a request error. Erroneous requests are
returned through the stack to the issuer with an error code.

• Forward Tag indicates that the request should be forwarded
to an output device. In this case, the target device and block
address must also be indicated. Forwarding occurs to the di-
rection of one of the output graph vertices.

• Return Control Path Tag indicates that a device needs return
path control over the request. Some devices need to know
when an asynchronous I/O request has completed and need
control over its return path through the hierarchy (Figure 6).
For instance, an encryption module requires access to the re-
turn path of a read request, because data needs to be decrypted
after it is read from the sink device. However, many mod-
ules do not require return path control. If no module in a
path through the hierarchy requests return path control, the re-
quest is merely redirected to another kernel device outside the
framework (e.g. the disk driver) and returned directly to the
issuer application, bypassing the framework’s return-path con-
trol. If, however, some module requests return-path control,
the framework must gain control of the request when it com-
pletes in another kernel device. In Violin’s Linux implemen-
tation, the driver sets an asynchronous callback on the request
to gain control when it completes. When the callback receives
the completed request, it passes it back up through the module
stack in the reverse manner, calling the pop I/O handlers, de-
scribed later in the API Section 2.4. Errors in the return path
are handled in a similar manner as in the forward (request)
path.

• Complete Tag indicates that a request is completed by this de-
vice. Consider the example of a caching module in the hi-
erarchy. A caching device is able to service requests either
from its cache or from the lower-level devices. If a requested
data block is found in the cache, the device loads the data in
the request buffer and sets the “complete” tag. The completed
request is not forwarded deeper in the hierarchy, but returns
from this point upwards to the issuer as shown at the right of
Figure 6 for device C. If the return control path tag is set, the
framework passes control to the devices in the stack that have
requested it. Using this control tag, an internal device behaves
as an new internal sink device.

A final issue with I/O requests flowing through the framework,
is dependencies between requests. For instance, there are cases
where a module requires an external request to wait for one or
more internal requests to complete. To deal with this, when an
internal request X is issued (asynchronously) the issuer module
may register one or more dependences of X to another requests
(Y, Z, ...) and provide asynchronous callback functions. Requests
X, Y, Z are processed concurrently and when each completes the
callback handler is called. The callback handler of the module
then processes the dependent requests according to the desired
ordering (i.e. it may wait for all or a few requests to finish before
releasing them). This mechanism supports arbitrary dependencies

void *vl_persistent_obj_alloc(int oid,int size);
void *vl_persistent_obj_[un]load(int oid);
void vl_persistent_obj_flush(int oid);
void vl_persistent_obj_free(int oid);

Figure 7. Violin API for metadata management.

among multiple requests. Cyclic dependencies that lead to dead-
lock can occur by erroneous module code which is the respon-
sibility of the module developer. Most such cases occur when a
device sends requests to devices higher in the same I/O path.

2.3. State Persistence

One of the most important issues in storage virtualization is meta-
data management and persistence. Violin supports metadata man-
agement facilities. The three main issues associated with meta-
data are: facilitating the use of persistent metadata, reducing
memory footprint, and providing consistency guarantees.

2.3.1. Persistent Metadata In Violin, modules can allocate
and manage persistent metadata objects of varying sizes using the
API summarized in Figure 7. To allocate a metadata object, a
module calls vl persistent alloc() using a unique object
ID and its size, as it would allocate memory.

Modules access metadata directly in memory, as any other data
structure. However, since device metadata are loaded dynamically
when the device in initialized, pointers may not point to the right
location. There are two methods for addressing this issue: (i) dis-
allow pointers in metadata accesses and (ii) always force loading
of metadata to the same address. Since the latter can be a problem
for large metadata objects and in our experience the former is not
overly restrictive, in our current design we disallow pointers in
metadata objects. However, this issue requires further investiga-
tion and is left for future work. When a module needs to destroy
a persistent object it calls the vl persistent free() func-
tion.

By default, when a virtual device is created in Violin, the sys-
tem stores its metadata in the same output address space as the
data. Alternatively, the user may specify explicitly a metadata de-
vice that will be used for storing persistent metadata for the new
virtual device. This can be very useful when metadata devices
are required to have stronger semantics compared to regular data
devices, e.g. a higher degree of redundancy.

Violin’s metadata manager automatically synchronizes dirty
metadata from memory to stable storage in an asynchronous man-
ner. The metadata manager uses a separate kernel thread to write
to the appropriate device metadata that are loaded in memory.
The user can also flush a metadata object explicitly with the
vl persistent flush() call.

Internally, each metadata object is represented with an ob-
ject descriptor, which is modified only by allocation/deallocation
calls. During these calls metadata object descriptors are stored in
a small index in the beginning of the metadata device. A pointer
to the metadata header index is stored with each virtual device in
the virtual hierarchy. Thus, when the virtual hierarchy is being
loaded and recreated, Violin reads the device metadata and loads
it to memory.

105

2.3.2. Reducing Memory Footprint This is important for
large metadata objects that may consume a large amount of main
memory or incur large amounts of I/O during saving to the meta-
data device. Violin provides API calls for explicitly loading and
unloading metadata to and from memory within each module
(Figure 7). Another possible solution is to transparently swap
metadata to stable storage. This solution is necessary for ex-
tremely large devices, where the size of the required metadata can
sometimes exceed the available memory of a machine. Since it is
not clear whether such modules actually need to be implemented,
Violin does not support this feature yet.

Violin retains a small amount of internal metadata that rep-
resent the hierarchy structure and are necessary to reconstruct the
device graph. Each graph node and edge requires a pointer, which
amounts to a few bytes per virtual device. The hierarchy metadata
is saved in all physical devices within a hierarchy. For this pur-
pose, Violin reserves a superblock of a few KBytes in every physi-
cal device of a hierarchy. A complete hierarchy configuration can
thus be loaded from the superblock of any physical device that
belongs to the hierarchy.

In summary, each module needs to allocate its own metadata,
and in the common case, where metadata can be kept in mem-
ory, it does not need to perform any other operation. The frame-
work will maintain metadata persistent and will reload the meta-
data from disk each time the virtual device is loaded, significantly
simplifying metadata management in individual modules.

2.3.3. Metadata Consistency In the event of system failures,
where a portion of the in-memory metadata may be lost or par-
tially written, application and/or Violin state may be corrupted.
We can define the following levels of metadata consistency:

1. Lazy-update consistency, that is, metadata are synchronized on
disk overwriting the older version every few seconds. This
means that if a failure occurs between or during updates of
metadata then metadata may be left inconsistent on-disk and
Violin may not be able to recover. In this case, there is a need
for a Violin-level recovery procedure (similar to fsck), which
however, we do not currently provide. If stronger guarantees
are required then one of the next forms of consistency may be
used instead.

2. Shadow-update consistency, where we use two metadata
copies on disk and maintain at least one of the two consistent
at all times. If during an update the set that is currently being
written becomes inconsistent due to a failure, Violin uses the
second copy to recover. In this case, it is guaranteed that Violin
will recover the device hierarchy and all its persistent objects
and will be able to service I/O requests. However, application
data may be inconsistent with respect to system metadata.

3. Atomic versioned-metadata consistency, guarantees that after
a failure, the system will be able to see a previous, consistent
version of application data and system metadata. Thus, this
is equivalent to a rollback to a previous point in time. In Vi-
olin this can be achieved by using a versioning layer [7] at
the leaves of a hierarchy. Although such a layer is available
in Violin, given its current implementation we need to slightly
modify it so that its own metadata are handled differently in
this particular case.

-> initialize (_device_t *dev, ...);
-> open (_device_t *dev,void *data);
-> close (_device_t *dev,void *data);
-> read_push (_device_t *dev, ...);
-> read_pop (_device_t *dev, ...);
-> write_push (_device_t *dev, ...);
-> write_pop (_device_t *dev, ...);
-> ioctl (_device_t *dev, int cmd, ...);
-> resize (_device_t *dev, int new_size);
-> device_info (_device_t *dev, ...);

Figure 8. API methods for Violin’s I/O modules.

Violin currently supports the first and second forms of meta-
data consistency. We expect that all three forms of consistency
will be available in the future releases of the framework code.

2.4. Module API

Extending an I/O hierarchy with new functionality is an arduous
task in modern kernels. The interface provided by kernels for
block I/O is fairly low-level. A block device driver has the role of
servicing block I/O read and write requests. Block requests
adhere to the simple block I/O API, where every request is de-
noted as a tuple of (block device,read/write,block
number,block size,data). In Linux, this API involves
many tedious and error prone tasks, such as I/O request queue
management, locking and synchronization of the I/O request
queues, buffer management, translating block addresses and in-
terfacing with the buffer cache and the VM subsystem.

Violin provides to its modules high-level API calls, that intu-
itively support its hierarchy model and hide the complexity of ker-
nel programming. The author of a module must set up a module
object, which consists of a small set of variables with the attributes
of the implemented module and a set of methods or API functions
that can be seen in Figure 8. The variables of the module object
in our current implementation include various static pieces of in-
formation about each module, such as the module name and id,
the minimum and maximum number of output nodes supported
by the device, and the number of non-read and write (ioctl) opera-
tions supported by the module. The role of each method prototype
is:

• initialize() is called once, the first time a virtual de-
vice is created to allocate and initialize persistent metadata and
module data structures for this device. Note that since Violin
retains state in persistent objects, this method will not be called
when a hierarchy is loaded, since device state is also loaded.

• open(), close() are called when a virtual device is
loaded or unloaded during the construction of hierarchy. The
module writer can use the close() call to perform garbage
collection and other necessary tasks for shutting down the de-
vice.

• read(), write() handle I/O requests passed to a virtual
device. Each has two methods, push and pop, that represent
the different I/O paths. Push handlers are called in the for-
ward path, while pop handlers are called in the return path,
if requested. These API methods are higher-level compared to

106

method
bindings

init()
read()
write()

....

init()
read()
write()

....

Violin’s Module Objects

Violin context

Kernel Space

init()
read()
write()

....

init()
read()
write()

....

Kernel module A Kernel module CKernel module B

Figure 9. Binding of extension modules to Violin.

their kernel counterparts and do not require complex I/O buffer
management and I/O queue management.

• ioctl() handles custom commands and events in a module,
in case direct access to it is required. This is used in some
of our modules, for example to explicitly trigger a snapshot
capture event in the versioning module.

• resize() is an optional method that specifies a new size
for an output virtual device. When this method is called in
a virtual device, it means that one of its output devices has
changed size as specified and thus, the virtual device has to
adjust all internal module metadata appropriately.

• device info() is used to export runtime device informa-
tion in human or machine readable form.

The main difference of this API from the classic block driver
API in Unix systems is the distinct push() and pop() methods for
read and write operations, versus a read(), write() in the classic
API. This is the key features of Violin’s API, that allows asyn-
chronous behavior. Finally the role of the initialize() call is dif-
ferent from the classic API. Since state persistence is maintained,
device initialization is necessary only once in its lifetime, at its
creation.

3. System Implementation

We have implemented Violin as a loadable block device driver in
the Linux 2.4 kernel accompanied by a set of simple user-level
management tools. Our prototype implements fully the I/O path
model described in Section 2.4. Violin extension modules are im-
plemented as separate kernel modules that are loaded on demand.
However, they are not full Linux device drivers themselves but re-
quire the framework’s core. Upon loading, each module registers
with the core framework module, binding its methods to internal
module objects as shown in Figure 9.

A central issue with the Violin driver is the implementation
of its asynchronous API on Linux 2.4. Next, we explain how
I/O requests are processed in Linux block device drivers and then
describe Violin’s implementation.

3.1. I/O Request Processing in Linux

The Linux kernel uses an I/O request structure to schedule I/O
operations to block devices. Every block device driver has an I/O
request queue, containing all the I/O operations intended for this
block device. Requests are placed in this queue by the kernel
function make request fn(). This function can be overrid-
den by a block driver’s own implementation. Requests are re-
moved from the queue and processed with the strategy or request
function of a block driver. When a request is complete, the driver
releases the I/O request structure back to the kernel after tagging

read_push()

write_push()

write_pop()

read_pop()

D
ev

ic
e

Y

read_push()

write_push()

write_pop()

read_pop()

D
ev

ic
e

X

read_push()

write_push()

write_pop()

read_pop()

D
ev

ic
e

Z

end of stack

2

3

5

6

7
8

9

11

V
io

lin
 C

or
e

D
ri

ve
r

1
Write

block request

4

Return comlete request to kernel

13
io_done_callback()

from kernel

(if return path control required)

10

12

Framework
internal functions

/dev/vld1
External Block Devices

Internal Device Hierarchy

with module methods

make_request_fn()

issue_async_external_io()

pop_device_stack()

push_device_stack()

(Disk)

/dev/sdg

(Disk)

/dev/hdc

Figure 10. Path of a write request in Violin.

it as successful or erroneous. If a released request is not appropri-
ately tagged or the data is incorrect, the kernel may crash.

Thus, there are two ways of processing I/O requests in a Linux
device driver. First, a device driver can use a request queue as
above where the kernel places requests and the strategy driver
function removes and processes them. This approach is used by
most hardware block devices. Second, a driver may override the
make request fn() kernel function with its own version and
thus, gain control of every I/O request before it is placed in the
request queue. This mode of operation is more appropriate for
virtual I/O drivers. In this mode, the driver does not use an I/O re-
quest queue, but rather redirects requests to other block devices.
This is the mode of operation used by many virtual I/O drivers,
such as LVM and MD. When a new I/O request arrives, the device
driver performs simple modifications to the I/O request structure,
such as modifying the device ID and/or the block address and re-
turns the request to the kernel that will redirect it to the new device
ID.

3.2. Violin I/O path

Violin uses the method of replacing the make requ-
est fn() call and operates asynchronously without blocking
inside this function. For every external I/O request received
through the make request fn() call, Violin’s device driver
traverses the I/O stack and calls the necessary module I/O han-
dlers (read push() or write push() depending on the type
of request). The I/O path traversal for a write request can be seen
in Figure 10.

Each handler processes the incoming request (modifying
its address, data, or both) and then returns control to the
push device stack() function, indicating the next device in
the path from one of its dependent (or lower) devices, marked with
outward arrows. Thus, the push device stack() function
passes the request through all the devices in the path. When the
request reaches an exit node, the driver issues an asynchronous
request to the kernel to perform the actual physical I/O to another
kernel driver (e.g. the disk driver). When return path control is
needed, the driver uses callback functions that Linux attaches to
I/O buffers. Using these callbacks the driver is able to regain con-

107

trol of the I/O requests when they complete in another driver’s
context and perform all necessary post-processing.

A Linux-specific issue that Violin’s kernel driver must deal
with, is handling buffer cache data that need module process-
ing and modification (e.g. encryption). The Linux kernel I/O
request descriptors, contain pointers to memory pages with the
data mapped by the buffer cache and other kernel layers, e.g. the
filesystem, to disk blocks. While an I/O request is in progress,
the memory page remains available for read access in the buffer
cache. Data-modifying layers, e.g. encryption, however, need to
transform the data on the page before writing it to the disk. Data
modification on the original memory page, results in the corrup-
tion of the filesystem and buffer cache buffers. To resolve this
problem with data-modifying modules, Violin creates a copy of
the memory page, where modules can modify the data and writes
the new page to the disk. The original page remains available in
the buffer cache.

4. Evaluation

In this section we evaluate the effectiveness of Violin in three ar-
eas: ease of development, flexibility, and performance.

4.1. Ease of Development

Measuring development effort is a hard task, since there exist no
widely accepted metrics for it. We attempt to quantify the devel-
opment effort by looking at the code size reduction that we can
achieve using Violin. Similar to FiST [32], we use code size as a
metric to examine relative complexity. We compare code sizes of
various block device drivers that exist for Linux with implemen-
tations of these modules under Violin:

• RAID: Implements RAID levels 0, 1, and 5. Failure detection
and recovery is also implemented for levels 1 and 5. Using
Violin’s ability to synthesize complex hierarchies, this module
can be used to create composite RAID levels, such as 1+0.

• Versioning: Offers on-line snapshot functionality at the block
level [7].

• Partitioning: Creates a partition on top of another device. It
supports partition tables and partition resizing.

• Aggregation: Functions as a volume group manager. It ag-
gregates many devices into one, either appending each after
the other or using striping and allows resizing of the individual
or aggregate device. Also, devices can be added or removed
and data can be migrated from one device to another.

• MD5 hashing: Computes the MD5 fingerprint for each block.
Fingerprints are inserted in a hash table and can be queried.
Its purpose is to offer content-based search capabilities and
facilitate differential compression.

• Encryption: Encrypts/decrypts data blocks, using a user-
specified key. We have currently implemented the Blowfish,
DES and 3DES encryption algorithms.

• Online Migration: Transparently migrates data from one de-
vice to another, at a user-controlled speed.

Table 4.1 shows the code size for each functional layer imple-
mented as a driver under Linux and as a module under Violin. The
features implemented in Violin modules are close to the features

Table 1. Linux drivers and Violin modules in kernel
code lines.

Virtualization Number of code lines
Layers / Functions Linux Driver Violin Module

RAID 11223 (MD) 2509
Partition & 5141 (LVM) 1521
Aggregation
Versioning 4770 (Clotho) 809
MD5 Hashing – 930
Blowfish Encryption – 804
DES & 3DES Encryption – 1526
Migration – 422

Core Violin Framework 14162 –

provided by the block drivers under Linux, including LVM. The
only exception exists in the MD Linux [2] driver. Our implemen-
tation, although it includes code for failure detection and recovery
in RAID, does not support the feature of spare disks in a RAID
volume. The main reason for not adding this functionality is that
we expect it to be handled by remapping failed disks to spare ones
with Violin.

We see that the size of the Violin framework core is about
14200 lines of code. Looking at individual modules, in the case
of LVM, code length is reduced by a factor of three, while in
MD and Versioning the reduction is about a factor of four and six
respectively. In MD, more than half of the module code (1300
lines) is copied from MD and is used for fast XOR computation.
This piece of code is written mainly in assembly and tests various
XOR implementations for speed in order to select the fastest one
for each system. If we compute code-length differences without
the user-level copied code, i.e. the XOR code, the code difference
for the RAID module reaches an order of magnitude.

Clearly code size cannot be used as a precise measure of com-
plexity. However, it is an indication of the reduction in effort
when implementing new functionality under Violin. For the mod-
ules we implement, we can attribute the largest code reductions
to the high-level module API and to the persistent metadata man-
agement support.

To examine how new functionality can be provided under Vi-
olin, we implement two new modules for which we could not
find corresponding Linux drivers: MD5 hashing and DES-type
encryption. For each module we use publicly available user-level
code. Table 4.1 shows that MD5 hashing is about 900 lines of
code in Violin out of which 416 lines are copied from the user-
level code. Similarly, our DES encryption module uses about
1180 lines of user-level code, out of a total of 1526 lines. Cre-
ating each module was an effort of just a few hours.

4.2. Flexibility

To demonstrate the flexibility of the proposed framework we show
how one can create more complex multi-layered hierarchies by
combining simple modules. Providing the same functionality
with standard OS mechanisms is much more difficult. In this
demonstration, we construct a complex hierarchy of virtual de-
vices over a set of physical devices, adding one layer at a time.

108

PARTITION

PARTITION

RAID−0

DiskBLOWFISH

DiskBLOWFISH

VERSIONING

#SCRIPT TO CREATE THE HIERARCHY:
#Initialize a hierarchy named "voila"
hrc_init /dev/vld voila 32768 1
#Import two IDE disks: /dev/hdb and /dev/hdc
dev_import /dev/vld /dev/hdb voila hdb
dev_import /dev/vld /dev/hdc voila hdc
#Create a Blowfish Encryption Layer on each disk
dev_create /dev/vld Blowfish voila BF_Dev_1 1 \

hdb BF_Dev_1 0
dev_create /dev/vld Blowfish voila BF_Dev_2 1 \

hdc BF_Dev_2 0
#Create two Partitions on top of these
dev_create /dev/vld Partition voila Part_Dev_1 \

1 BF_Dev_1 -1 900000 Part_Dev_1 0
dev_create /dev/vld Partition voila Part_Dev_2 \

1 BF_Dev_2 -1 900000 Part_Dev_2 0
#Create a RAID-0 device on the 2 partitions
dev_create /dev/vld RAID voila RAID0_Dev 2 \

Part_Dev_1 Part_Dev_2 0 32 RAID0_Dev 0
#Create a Versioned device on top
dev_create /dev/vld Versioning voila Version_Dev \

1 RAID0_Dev 40 Version_Dev 200000
#Link hierarchy "voila" to /dev/vld1
dev_linkpart /dev/vld voila Version_Dev 1
#Make a filesystem on /dev/vld1 and mount it
mkfs.ext2 /dev/vld1
mount -t ext2 /dev/vld1 /vldisk

Figure 11. A hierarchy with advanced semantics and
the script that creates it.

Figure 11 depicts how such a hierarchy is built in a bottom-up
fashion using simple user-level tools. Initially two disks are in-
serted in the hierarchy as sink devices. Next, a partitioning layer
is added, which creates two partitions, one on each disk. Then,
a RAID-0 layer creates a striped volume on top of the two parti-
tions. Next, a versioning layer is added on top of the striped vol-
ume to provide online snapshots. Finally, a Blowfish encryption
layer is added in the hierarchy to encrypt data. While this mod-
ule can be placed anywhere in the hierarchy, we chose to place it
directly above the disks.

Overall, we find that Violin simplifies the creation of complex
hierarchies that provide advanced functionality, once the corre-
sponding modules are available.

4.3. Performance

To evaluate the performance of Violin we use two well-known I/O
benchmarks, Iometer [13] and PostMark [15]. Iometer is a bench-
mark that generates and measures I/O workloads with various pa-
rameters. PostMark is a synthetic benchmark that emulates the
operation of a mail server. Postmark runs on top of a filesystem,
while Iometer runs on raw block devices.

The system we use in our evaluation is a commodity x86-
based Linux machine, with two AMD Athlon MP 2200+ CPUs,

512 MB RAM, three Western Digital WDC WD800BB-00CAA1
ATA Hard Disks with 80 GB capacity, 2MB cache, and UDMA-
100 support. The OS is Red Hat Linux 9.0, with RedHat’s latest
2.4.20-31.9smp kernel.

First, we examine the performance of single Violin modules
compared to their Linux driver counterparts. We use three differ-
ent configurations: raw disk, RAID, and logical volume manage-
ment. In each configuration we use layers implemented as a block
driver under Linux and as modules under Violin:

A. The raw Linux disk driver (Disk) vs. a pass-through module
in Violin (Disk Module). The same physical disk partition is
used in both cases.

B. The Linux Volume Manager driver (LVM) vs. a dual module
setup in Violin using the partitioning and aggregation modules
(Aggr.+Part. Modules). In the Violin setup we use two disks
that are initially aggregated into a single resizable striped vol-
ume. On top of this large volume we create a partition where
the filesystem is created. In LVM we use the same setup. We
initialize the same disks into physical volumes, create a vol-
ume group consisting of the two disks, and finally create a
striped logical volume on top. The size of the stripe block
is 32 KBytes in both setups.

C. The Linux MD driver (MD RAID-0 & 1) vs. the Violin RAID
module (RAID-0 & 1 Module). Both modules support RAID
levels 0, 1, and 5. We compare performance of RAID levels 0
(striping) and 1 (mirroring) for MD and Violin. In both setups
we use the same two disks and a stripe block of 32 KBytes
for RAID-0. Note that the system setup in the RAID-0 case is
identical to the LVM experiments, with the exception of dif-
ferent software layers being used.

4.3.1. Iometer Iometer [13] generates I/O workloads based on
specified parameters (e.g. block size, randomness) and measures
them on raw block devices. We vary three parameters in our work-
loads: (i) Access pattern: we use workloads that are either sequen-
tial or random. (ii) Read-to-write ratio: we explore three ratios,
100% reads, 100% writes and a mix of 70% reads - 30% writes.
(iii) Block size: we use 512 byte to 64 KByte block sizes.

Figures 12-15 summarize our results with Iometer version
2004.07.30. Figure 12 compares the performance of a pass-
through to disk Violin module to the plain system disk. Figures
13, 14 and 15 compare the performance of Violin modules to their
kernel counterparts, LVM and MD RAID levels 0 and 1. The
left column graphs represent sequential I/O performance, while
the right graphs show random I/O performance. In most cases we
observe that the performance difference between similar function-
ality modules is less than 10%. There are cases when Violin has
a bit better performance than the kernel drivers and cases when it
performs a little worse.

The larger performance differences observed are: (i) a low se-
quential performance of LVM and Violin modules for block sizes
less than 4KB. This is due to their default block size for their
device drivers, which is set to 4KB, compared to 1KB for raw
disk and the MD driver. This explains the steep performance in-
crease for Violin and LVM that is consistently observed between
block sizes of 2KB and 4KB. Using a smaller system block size
on Violin is possible, but requires changes to the current Violin

109

512B

 1KB

 2KB

 4KB

 8KB

16KB

32KB

64KB

Block size

0

10

20

30

40

50

60

70

80

M
By

te
s /

 se
c

IOmeter throughput for Violin Raw Disk vs. System Raw Disk for One Disk

Violin Raw Disk - 100% Read
Violin Raw Disk - 100% Write
Violin Raw Disk - 70% Read, 30% Write

512B

 1KB

 2KB

 4KB

 8KB

16KB

32KB

64KB

Block size

0

1

2

3

4

5

6

7

8

M
By

te
s /

 se
c

Raw System Disk - 100% Read
Raw System Disk - 100% Write
Raw System Disk - 70% Read, 30% Write

Figure 12. Raw disk throughput (MBytes/sec) for sequential (left) and random (right) workloads.

512B

 1KB

 2KB

 4KB

 8KB

16KB

32KB

64KB

Block size

0

10

20

30

40

50

60

70

80

M
By

te
s /

 se
c

IOmeter throughput for Violin Aggregation+Partition vs. LVM for 2 Striped Disks (32K stripe)

Violin Aggr+Part - 100% Read
Violin Aggr+Part - 100% Write
Violin Aggr+Part - 70% Read, 30% Write

512B

 1KB

 2KB

 4KB

 8KB

16KB

32KB

64KB

Block size

0

1

2

3

4

5

6

7

8
M

By
te

s /
 se

c

LVM - 100% Read
LVM - 100% Write
LVM - 70% Read, 30% Write

Figure 13. LVM throughput (MBytes/sec) for sequential (left) and random (right) workloads.

code. (ii) MD has higher performance for random write opera-
tions, both in RAID-0 and RAID-1 modes. This is due to MD’s
optimized buffer cache management, which caches writes and can
more effectively cluster write requests. This is mainly a Linux
implementation issue and we are currently working on improving
buffer cache management in Violin’s driver.

4.3.2. Postmark results PostMark [15] creates a pool of con-
tinually changing files on a filesystem and measures the transac-
tion rates for a workload approximating a large Internet electronic
mail server. Initially a pool of random text files is generated, rang-
ing in size from a configurable low bound to a configurable high
bound. Once the pool has been created, a specified number of
transactions occurs. Each transaction can be one of two pairs of
I/O operations: (i) create file or delete file and (ii) read file or
append file. Each transaction type and its affected files are cho-
sen randomly. When all of the transactions have completed, the
remaining active files are deleted.

To evaluate the performance of each configuration, we use
a workload consisting of: (i) files ranging from 100KBytes to
10MBytes in size, (ii) an initial pool of 1000 files, and (iii)
3000 file transactions with equal biases for read/append and cre-
ate/delete. Each run is repeated five times on the same filesystem
to account for filesystem staleness and the results are averaged
over the five runs. During each run there are over 2500 files cre-
ated, about 8.5GBytes of data read and more than 15GBytes of
data written.

Figure 16 shows our PostMark results. In each graph and con-
figuration, the light bars depict the kernel device driver measure-
ments, while the darker bars show the numbers for Violin mod-
ules. The bars have been grouped according to each system con-
figuration and PostMark experiment. In all cases, except RAID-1,
there is a small difference, less than 10% between the two sys-
tems, Linux driver vs. Violin module. In the RAID-1 case there
is a large difference of about 30%, due again to the better buffer-

110

512B

 1KB

 2KB

 4KB

 8KB

16KB

32KB

64KB

Block size

0

10

20

30

40

50

60

70

80

M
By

te
s /

 se
c

IOmeter throughput for RAID-0: Violin vs. Linux MD for 2 Disks and 32KB Stripe

Violin RAID-0 - 100% Read
Violin RAID-0 - 100% Write
Violin RAID-0 - 70% Read, 30% Write

512B

 1KB

 2KB

 4KB

 8KB

16KB

32KB

64KB

Block size

0

1

2

3

4

5

6

7

8

M
By

te
s /

 se
c

Linux MD RAID-0 - 100% Read
Linux MD RAID-0 - 100% Write
Linux MD RAID-0 - 70% Read - 30% Write

Figure 14. RAID-0 throughput (MBytes/sec) for sequential (left) and random (right) workloads.

512B

 1KB

 2KB

 4KB

 8KB

16KB

32KB

64KB

Block size

0

10

20

30

40

50

60

70

80

M
By

te
s /

 se
c

IOmeter throughput for RAID-1: Violin vs. Linux MD for 2 Disks

Violin RAID-1 - 100% Read
Violin RAID-1 - 100% Write
Violin RAID-1 - 70% Read, 30% Write

512B

 1KB

 2KB

 4KB

 8KB

16KB

32KB

64KB

Block size

0

1

2

3

4

5

6

7

8
M

By
te

s /
 se

c

Linux MD RAID-1 - 100% Read
Linux MD RAID-1 - 100% Write
Linux MD RAID-1 - 70% Read, 30% Write

Figure 15. RAID-1 throughput (MBytes/sec) for sequential (left) and random (right) workloads.

cache management that MD has. As mentioned before, we are
currently improving this aspect of Violin’s driver.

4.4. Hierarchy Performance

Finally, for the hierarchy of Figure 11, we evaluate with Iometer
the performance of the hierarchy as each module is introduced.
Our goal is to provide some intuition on expected system perfor-
mance with complex configurations. Figure 17 shows the results
for sequential (top) and random (bottom) workloads. Each curve
corresponds to a different configuration as each module is intro-
duced to the hierarchy. In the sequential workloads, we note that
variations in performance occur depending on the functionality of
the layers being introduced. We see a large performance reduc-
tion in the versioning module, which is due to the disk layout that
this module alters [7]. Encryption overhead on the other hand, ap-
pears to be about 10-15%. In random workloads we observe that
the hierarchy performance is influenced only by the versioning

layer functionality, which can increase performance substantially.
This happens because of the change in the disk layout that ver-
sioning incurs, through write request logging [7]. Encryption or
RAID-0, on the other hand, do not seem to influence performance
for random I/O.

5. Related Work

In this section we comment on previous and related work on (a)
extensible filesystems, (b) extensible network protocols, and (c)
block-level storage virtualization.

5.0.1. Extensible filesystems Storage extensions can be im-
plemented at various levels in a storage system. The highest level
is within the filesystem, where combined software layers imple-
ment the desired functionality. The concept of layered filesystems
has been explored in previous research.

Ficus [11], one of the earliest approaches, proposes a filesys-

111

Violin Disk

System Disk

Vl. Aggr+Part

LVM
Violin RAID-0

M
D RAID-0

Violin RAID-1

M
D RAID-1

0

500

1000

T
o
ta

l
ru

n
 t

im
e

(s
ec

o
n

d
s)

(a) Total runtime

Violin Disk

System Disk

Vl. Aggr+Part

LVM
Violin RAID-0

M
D RAID-0

Violin RAID-1

M
D RAID-1

0

10

20

30

M
B

yt
es

 r
ea

d
 p

er
 s

ec
on

d
(b) Read throughput

Violin Disk

System Disk

Vl. Aggr+Part

LVM
Violin RAID-0

M
D RAID-0

Violin RAID-1

M
D RAID-1

0

10

20

30

M
B

yt
es

 w
ri

tt
en

 p
er

 s
ec

on
d

Violin
System

(c) Write throughput

Figure 16. Postmark results.

512B

 1K
B

 2K
B

 4K
B

 8K
B

16K
B

32K
B

64K
B

Block size

0

10

20

30

40

50

60

70

80

M
B

yt
es

 /
se

c

Workload: 100% Sequential Read

Partition
Partition + RAID-0
Partition + RAID-0 + Version.
Partition + RAID-0 + Version. + Blowfish

512B

 1K
B

 2K
B

 4K
B

 8K
B

16K
B

32K
B

64K
B

Block size

0

10

20

30

40

50

60

70

80

M
B

yt
es

 /
se

c

Workload: 100% Sequential Write

Partition
Partition + RAID-0
Partition + RAID-0 + Version.
Partition + RAID-0 + Version. + Blowfish

512B

 1K
B

 2K
B

 4K
B

 8K
B

16K
B

32K
B

64K
B

Block size

0

10

20

30

40

50

60

70

80

M
B

yt
es

 /
se

c

Workload: 70% Read - 30% Write Sequential

Partition
Partition + RAID-0
Partition + RAID-0 + Version.
Partition + RAID-0 + Version. + Blowfish

512B

 1K
B

 2K
B

 4K
B

 8K
B

16K
B

32K
B

64K
B

Block size

0

1

2

3

4

5

6

M
B

yt
es

 /
se

c

Workload: 100% Random Read

512B

 1K
B

 2K
B

 4K
B

 8K
B

16K
B

32K
B

64K
B

Block size

0

1

2

3

4

5

6

M
B

yt
es

 /
se

c

Workload: 100% Random Write

512B

 1K
B

 2K
B

 4K
B

 8K
B

16K
B

32K
B

64K
B

Block size

0

1

2

3

4

5

6

M
B

yt
es

 /
se

c

Workload: 70% Read - 30% Write Random

Figure 17. Throughput for hierarchy configuration as layers are added, using Iometer.

112

tem with a stackable layer architecture, where desired function-
ality is achieved by loading appropriate modules. A later ap-
proach [30] proposes layered filesystem implementation by ex-
tending the vnode/VFS interface to allow “stacking” vnodes. A
similar concept at the user-level, was proposed in the recent Mona
FS [24], which allows application extensions to files through
streaming abstractions. Another recent approach, FiST [32], uses
a high-level specification language and a compiler to produce a
filesystem with the desired features. FiST filesystems are built
as extensions on top of baseFS, a native low-level filesystem. A
similar concept was used in the Exokernel [14], an extensible OS
that comes with XN, a low-level in-kernel storage system. XN
allows users to build library filesystems with their desired fea-
tures. However, developing library filesystems for the Exokernel
requires significant effort and can be as difficult as developing a
native monolithic FS for an operating system.

Our work shares similarity with these approaches to the extent
that we are also dealing with extensible storage stacks. However,
the fact that we work at the block-level in the storage system re-
quires that our framework, provides different APIs to modules,
uses different I/O abstractions for its services, and different ker-
nel facilities in its implementation. Thus, although the high level
concept is similar to extensible filesystems, the challenges faced
and solutions provided are different.

Implementing storage extensions at either the filesystem level
or the storage system level is desirable, each for different reasons
and each approach is not exclusive of the other. The basic pros and
cons of each approach stem from the API and metadata each level
is aware of. One fundamental characteristic of filesystems, for
example, is that they have file metadata. Thus, they can associate
blocks that belong to the same file and are able to provide policies
at the file level. On the other hand, storage systems operate at the
block-level and they have no information about the relationships
of blocks. Thus, metadata need to be maintained at the block level
resulting potentially in large memory overhead. Moreover, block
I/O operations cannot be associated precisely with each other, lim-
iting possible optimizations. On the positive side, block-level ex-
tensions are transparent to any filesystem and volume-level poli-
cies can be provided. Moreover, many block-level functions, e.g.
encryption or RAID-levels, can operate faster than at the file sys-
tem level, since they operate on raw fixed-size blocks and not on
the structured variable-sized data of the filesystem.

5.0.2. Extensible network protocols Our work on storage
virtualization shares similarities with frameworks for layered net-
work stacks. The main efforts in this direction are the Click
Router [17], X-kernel [20], and Horus [26]. All three approaches
aim at building a framework for synthesizing network protocols
from simpler elements. They use a graph representation for lay-
ering protocols, they envision simple elements in each protocol,
and provide mechanisms for combining these simple elements in
hierarchies with rich semantics and low performance overhead.
Scout [19] is a communication-centric OS, also supporting stack-
able protocols. The main abstraction of Scout is the I/O paths be-
tween data sources and sinks, an idea applicable both to network
and storage stacks.

In our work we are interested in providing a similar frame-
work for block-level storage systems. We share the same obser-
vation that there is an increased need to extend the functionality

of block-level storage (network protocol stacks) and that doing so
is a challenging task with many implications on storage (network)
infrastructure design. However, the underlying issues in network
and storage stacks are different:

• Network stacks distinguish flows of self-contained packets,
while storage stacks cannot distinguish flows, but map data
blocks from one device to another.

• Network and storage stacks exhibit fundamentally different re-
quirements for state persistence. Network stacks do not need
to remember where they scheduled every packet in order to
recover it at a later time, and thus, do not require extensive
metadata. On the other hand, storage stacks must be able to re-
construct the data path for each I/O request passing through the
stack, requiring often times large amounts of persistent meta-
data.

• Send and receive paths in network protocol stacks are fairly
independent, whereas in a storage hierarchy there is strong
coupling between the request and completion paths for each
read and write request. Moreover, an issue not present in net-
work protocol stacks is the the need for asynchronous handling
of I/O requests and completions, which introduces additional
complexity in the system design and implementation.

5.0.3. Block-level storage virtualization The most popular
virtualization software is volume managers. The two most ad-
vanced open-source volume managers currently are EVMS and
GEOM. EVMS [6], is a user-level distributed volume manager
for Linux. It uses the MD [2] and device-mapper kernel modules
to support user-level plugins called features. However, it does not
offer persistent metadata or block remapping primitives to these
plugins. Moreover, EVMS focuses on configuration flexibility
with predefined storage semantics (e.g. RAID levels) and does
not easily allow generic extensions (e.g. versioning). GEOM [8]
is a stackable BIO subsystem under development for FreeBSD.
The concepts behind it GEOM are, to our knowledge, the clos-
est to Violin. However, GEOM does not support persistent meta-
data which, combined with dynamic block mapping are neces-
sary for advanced modules such as versioning [7]. LVM [25] and
Vinum [18] are simpler versions of EVMS and GEOM. Violin has
all the configuration and flexibility features of a volume manager
coupled with the ability to write extension modules with arbitrary
virtualization semantics.

Besides open-source software, there exist numerous virtualiza-
tion solutions in the industry. HP OpenView Storage Node Man-
ager [12] helps administrators control, plan, and manage direct-
attached and networked storage, acting as a central management
console. EMC Enginuity [4], a storage operating environment
for high-end storage clusters, employs various techniques to de-
liver optimized performance, availability and data integrity. Ver-
itas Volume Manager [28] and Veritas File System aim at assist-
ing with online storage management. Similar to other volume
managers, physical disks can be grouped into logical volumes to
improve disk utilization and eliminate storage-related downtime.
Moreover, administrators have the ability to move data between
different storage arrays, balance I/O across multiple paths to im-
prove performance, and replicate data to remote sites for higher
availability. However, in all cases, the offered virtualization func-
tions are predefined and they do not seem to support extensibility

113

of the I/O stack with new features. For instance, EMC Enginu-
ity currently supports only the following predefined data protec-
tion options: RAID-1, Parity RAID (1 parity disk per 3 or 7 data
disks), and RAID-5 [5].

RAIDframe [31] enables rapid prototyping and evaluation of
RAID architectures, which is similar but narrower than our goals.
The authors use a DAG representation for specifying RAID archi-
tectures, similar to Violin. However, their goal is to evaluate cer-
tain architectural parameters (encoding, mapping, caching) and
not to provide extensible I/O hierarchies with arbitrary virtualiza-
tion functions.

The latest versions of the Windows OS support an integrated
model for building device drivers, the Windows Driver Model
(WDM) [21]. This model specifies the runtime support available
to writers of device drivers. However, unlike Violin for block-
level devices, it only provides generic kernel support and does not
include functionality specific to storage.

6. Limitations and Future work

Overall, Violin offers a highly configurable environment to easily
experiment with advanced storage functionality. The main limi-
tation of our work is that we have evaluated Violin with a specific
set of modules. However, we believe that this set is broad enough
to demonstrate the benefits of our approach. Further extensions to
Violin are possible as we gain more experience with its strengths
and limitations.

There are two important directions for future work. First,
given that we can extend the I/O hierarchy with a rich set of mech-
anisms, it is important to examine how user requirements can be
mapped to these mechanisms automatically [16]. An interesting
aspect on this research direction is to answer the question of how
much a system can do in terms of optimizations in this translation
process both statically when the virtual I/O hierarchy is built [29],
but mostly dynamically during system operation.

Second, it is interesting to examine how Violin can be ex-
tended to include the network path in virtual hierarchies. Net-
worked storage systems offer the opportunity to distribute the vir-
tual I/O hierarchy throughout the path from the application to the
disk, as shown in Figure 1. Exploring the various possibilities and
tradeoffs may provide insight on how virtualization functionality
should be split among components in storage systems.

7. Conclusions

In this work we design, implement, and evaluate Violin, a virtual-
ization framework for block-level disk storage. Violin allows easy
extensions to the block I/O hierarchy with new mechanisms and
flexible combining of these mechanisms to create modular hierar-
chies with rich semantics.

To demonstrate its effectiveness we implement Violin within
the Linux operating system and provide several I/O modules. We
find that Violin significantly reduces implementation effort. For
instance, in cases where user-level library code is available, new
Violin modules can be implemented within a few hours. Using a
simple user-level tool we create I/O hierarchies that combine the
functionality of various modules and provide a set of features dif-
ficult to offer with monolithic block-level drivers. Finally, we use
two benchmarks to examine the performance overhead of Violin
over traditional, monolithic drivers and driver-based hierarchies,

and find that Violin modules and hierarchies perform within 10%
of their counterparts.

Overall, we find that our approach provides adequate support
for embedding powerful mechanisms in the storage I/O stack with
manageable effort and small performance overhead. We believe
that Violin is a concrete step towards supporting advanced stor-
age virtualization, reducing storage management overheads and
complexity, and building self-managed storage systems.

8. Acknowledgments

We thankfully acknowledge the support of Natural Sciences and
Engineering Research Council of Canada, Canada Foundation for
Innovation, Ontario Innovation Trust, the Nortel Institute of Tech-
nology, Nortel Networks, the General Secretariat of Research and
Technology, Greece and the support of the European FP6-IST
program through the SIVSS project.

REFERENCES
[1] A. Acharya, M. Uysal, and J. Saltz. Active Disks: Programming

Model, Algorithms and Evaluation. In Proc. of the 8th ASPLOS,
pages 81–91, San Jose, California, Oct. 3–7, 1998.

[2] M. de Icaza, I. Molnar, and G. Oxman. The linux raid-1,-4,-5 code.
In LinuxExpo, Apr. 1997.

[3] W. de Jonge, M. F. Kaashoek, and W. C. Hsieh. The Logical Disk: A
New Approach to Improving File Systems. In Proc. of 14th SOSP,
pages 15–28, 1993.

[4] EMC. Enginuity(TM): The Storage Platform Operating Environ-
ment (White Paper). http://www.emc.com/pdf/techlib/c1033.pdf.

[5] EMC. Introducing RAID 5 on Symmetrix DMX.
http://www.emc.com/ products/ systems/ enginuity/ pdf/
H1114 Intro raid5 DMX ldv.pdf.

[6] Enterprise Volume Management System. evms.sourceforge.net.
[7] M. D. Flouris and A. Bilas. Clotho: Transparent Data Versioning at

the Block I/O Level. In 12th NASA Goddard, 21st IEEE Conference
on Mass Storage Systems and Technologies (MSST2004), Apr. 2004.

[8] FreeBSD: GEOM Modular Disk I/O Request Transformation
Framework. http://kerneltrap.org/node/view/454.

[9] G. A. Gibson, D. F. Nagle, K. Amiri, J. Butler, F. W. Chang, H. Go-
bioff, C. Hardin, E. Riedel, D. Rochberg, and J. Zelenka. A Cost-
Effective, High-Bandwidth Storage Architecture. In Proc. of the 8th
ASPLOS, pages 92–103, San Jose, California, Oct. 3–7, 1998.

[10] J. Gray. Storage Bricks Have Arrived. Invited Talk at the 1st
USENIX Conf. on File And Storage Technologies (FAST ’02),
2002.

[11] J. Heidemann and G. Popek. File System Development with Stack-
able Layers. ACM Transactions on Computer Systems, 12(1):58–89,
Feb. 1994.

[12] HP. OpenView Storage Area Manager. http://h18006.
www1.hp.com/ products/ storage/ software/ sam/ index.html.

[13] Iometer team. Iometer: The I/O Performance Analysis Tool.
http://www.iometer.org.

[14] M. F. Kaashoek, D. R. Engler, G. R. Ganger, H. Briceno, R. Hunt,
D. Mazieres, T. Pinckney, R. Grimm, J. Janotti, and K. Mackenzie.
Application Performance and Flexibility on Exokernel Systems. In
Symposium on Operating Systems Principles, pages 52–65, 1997.

[15] J. Katcher. PostMark: A New File System Benchmark. http://
www.netapp.com/ tech library/3022.html.

[16] K. Keeton and J. Wilkes. Automatic design of dependable data stor-
age systems. In Proc. of Workshop on Algorithms and Architectures
for Self-managing Systems, pages 7–12, San Diego, CA, June 2003.

[17] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek.
The Click modular router. ACM Transactions on Computer Systems,
18(3):263–297, Aug. 2000.

114

[18] G. Lehey. The Vinum Volume Manager. In Proc. of the FREENIX
Track (FREENIX-99), pages 57–68, Berkeley, CA, June 6–11 1999.
USENIX Association.

[19] D. Mosberger and L. L. Peterson. Making Paths Explicit in the Scout
Operating System. In Proc. of the 2nd USENIX Symposium on Op-
erating Systems Design and Impl. (OSDI96), Oct. 28–31 1996.

[20] S. W. O’Malley and L. L. Peterson. A dynamic network architec-
ture. ACM Transactions on Computer Systems, 10(2):110–143, May
1992.

[21] W. Oney. Programming the Microsoft Windows Driver Model, Sec-
ond Edition. http://www.microsoft.com/mspress/books/6262.asp.

[22] D. Patterson. The UC Berkeley ISTORE Project: bringing availabil-
ity, maintainability, and evolutionary growth to storage-based clus-
ters. http://roc.cs.berkeley.edu, January 2000.

[23] B. Phillips. Industry Trends: Have Storage Area Networks Come of
Age? Computer, 31(7):10–12, July 1998.

[24] P. W. Schermerhorn, R. J. Minerick, P. W. Rijks, and V. W. Freeh.
User-level Extensibility in the Mona File System. In Proc. of Freenix
2001 Conference, pages 173–184, June 2001.

[25] D. Teigland and H. Mauelshagen. Volume managers in linux. In
Proc. of USENIX 2001 Technical Conference, June 2001.

[26] R. van Renesse, K. P. Birman, R. Friedman, M. Hayden, and D. A.
Karr. A Framework for Protocol Composition in Horus. In Sympo-
sium on Principles of Distributed Computing, pages 80–89, 1995.

[27] Veritas. Storage Foundation(TM). http://www.veritas.com/ Prod-
ucts/ www?c=product&refId=203.

[28] Veritas. Volume Manager(TM). http://www.veritas.com/vmguided.
[29] J. Wilkes. Traveling to rome: Qos specifications for automated stor-

age system m anagement. In Proc. of the Int. Workshop on QoS
(IWQoS’2001). Karlsruhe, Germany, June 2001.

[30] G. C. S. T. K. Wong. Stacking/ vnodes: A progress report. In Proc.
of the USENIX Summer 1993 Technical Conference, pages 161–174,
Berkeley, CA, USA, June 1993. USENIX Association.

[31] W.V. Courtright II and G.A. Gibson and M. Holland andJ. Zelenka.
RAIDframe: Rapid Prototyping for Disk Arrays. In Proc. of the
1996 Conference on Measurement and Modeling of Computer Sys-
tems (SIGMETRICS), volume 1:24, pages 268–269, May 1996.

[32] E. Zadok and J. Nieh. FiST: A Language for Stackable File Systems.
In Proc. of the 2000 USENIX Annual Technical Conference, pages
55–70. USENIX Association, June 18–23 2000.

115

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

