
EXTENSIBLE NETWORKED-STORAGE VIRTUALIZATION

WITH METADATA MANAGEMENT AT THE BLOCK LEVEL

by

Michail D. Flouris

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Graduate Department of Computer Science
University of Toronto

Copyright c© 2009 by Michail D. Flouris

Abstract

Extensible Networked-Storage Virtualization

with Metadata Management at the Block Level

Michail D. Flouris

Doctor of Philosophy

Graduate Department of Computer Science

University of Toronto

2009

Increased scaling costs and lack of desired features is leading to the evolution of high-performance

storage systems from centralized architectures and specialized hardware to decentralized, commodity

storage clusters. Existing systems try to address storage cost and management issues at the filesystem

level. Besides dictating the use of a specific filesystem, however, this approach leads to increased

complexity and load imbalance towards the file-server side, which in turn increase costs to scale.

In this thesis, we examine these problems at the block-level. This approach has several advantages,

such as transparency, cost-efficiency, better resource utilization, simplicity and easier management.

First of all, we explore the mechanisms, the merits, and the overheads associated with advanced

metadata-intensive functionality at the block level, by providing versioning at the block level. We find

that block-level versioning has low overhead and offers transparency and simplicity advantages over

filesystem-based approaches.

Secondly, we study the problem of providing extensibility required by diverse and changing appli-

cation needs that may use a single storage system. We provide support for (i) adding desired functions

as block-level extensions, and (ii) flexibly combining them to create modular I/O hierarchies. In this

direction, we design, implement and evaluate an extensible block-level storage virtualization frame-

work, Violin, with support for metadata-intensive functions. Extending Violin we build Orchestra, an

extensible framework for cluster storage virtualization and scalable storage sharing at the block-level.

We show that Orchestra’s enhanced block interface can substantially simplify the design of higher-level

storage services, such as cluster filesystems, while being scalable.

Finally, we consider the problem of consistency and availability in decentralized commodity clus-

ii

ters. We propose RIBD, a novel storage system that provides support for handling both data and meta-

data consistency issues at the block layer. RIBD uses the notion of consistency intervals (CIs) to pro-

vide fine-grain consistency semantics on sequences of block level operations by means of a lightweight

transactional mechanism. RIBD relies on Orchestra’s virtualization mechanisms and uses a roll-back

recovery mechanism based on low-overhead block-level versioning. We evaluate RIBD on a cluster of

24 nodes, and find that it performs comparably to two popular cluster filesystems, PVFS and GFS, while

offering stronger consistency guarantees.

iii

To my wife, Stavroti, for her support and patience to see the end of it.

To my children, Kleria and Dimitris, for making my days (and nights) worth it.

iv

Acknowledgements

I have been extremely fortunate to have Professor Angelos Bilas as my supervisor. His constant

support, insightful comments and patient guidance have aided me greatly throughout my research en-

deavors. I am deeply grateful to him for all his support and all I have learned under his supervision.

I would also like to thank the members of my committee, Professors Angela Demke Brown, H.-

Arno Jacobsen, Cristiana Amza and my external appraiser Remzi Arpaci-Dusseau, for their thoughtful

comments that significantly improved this thesis.

Special thanks go to all colleagues and paper co-authors, whose help and insight has been invaluable

to my research efforts, more specifically Renaud Lachaize, Manolis Marazakis, Kostas Magoutis, Jesus

Luna, Maciej Brzezniak, Zsolt Németh, Stergios Anastasiadis, Evangelos Markatos, Dionisios Pnev-

matikatos, Sotiris Ioannidis, Dimitris Xinidis, Rosalia Christodoulopoulou, Reza Azimi, and Periklis

Papakonstantinou.

A great thanks to all the people of the legendary Grspam list and all my friends in Toronto for

making my life there warmer and more fun. I am especially grateful to Yannis Velegrakis, Tasos Ke-

mentsientsidis, Stavros Vassos, Giorgos Giakkoupis and Vasso Bartzoka for their hospitality.

I would like to thank also all the present and past members of the CARV lab and FORTH-ICS

for all the conversations, the fun and for creating an enjoyable and stimulating research environment.

Many special thanks go to Stavros Passas, Michalis Ligerakis, Sven Karlsson, Markos Foundoulakis

and Yannis Klonatos for their help with the hardware, the cluster administration, and debugging.

A big “thank you” goes to Linda Chow for her help with the administrative tasks.

Thanks to all the friends in Greece for the moral support.

Finally, I would like to thank the people that really made all this possible; my wife Stavroti Liodaki,

my children Kleria and Dimitris, my parents Maria and Dimitris, sister Irini, brother Andreas, and my

family in-law. Thank you all for everything you have done for me.

v

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Our Approach . 6

1.3 Problems and Contributions . 8

1.4 Overview . 9

1.4.1 Block-level versioning . 10

1.4.2 Storage resource sharing and management . 10

1.4.3 Scalable storage distribution and sharing . 13

1.4.4 Reliability and Availability . 14

1.5 Thesis Organization . 17

2 Related Work 18

2.1 Clotho: Block-level Versioning . 21

2.2 Violin: Extensible Block-level Storage . 24

2.2.1 Extensible filesystems . 24

2.2.2 Extensible network protocols . 25

2.2.3 Block-level storage virtualization . 26

2.3 Orchestra: Extensible Networked-storage Virtualization 27

2.3.1 Conventional cluster storage systems . 28

2.3.2 Flexible support for distributed storage . 29

2.3.3 Support for cluster-based storage . 30

2.3.4 Summary . 32

2.4 RIBD: Taxonomy and Related Work . 32

vi

2.4.1 Taxonomy of existing solutions . 32

2.4.2 Related Work . 36

3 Clotho: Transparent Data Versioning at the Block I/O Level 38

3.1 Introduction . 38

3.2 System Design . 42

3.2.1 Flexibility and Transparency . 42

3.2.2 Reducing Metadata Footprint . 45

3.2.3 Version Management Overhead . 47

3.2.4 Common I/O Path Overhead . 48

3.2.5 Reducing Disk Space Requirements . 51

3.2.6 Consistency . 53

3.3 System Implementation . 54

3.4 Experimental Results . 55

3.4.1 Bonnie++ . 57

3.4.2 SPEC SFS . 57

3.4.3 Compact version performance . 60

3.5 Limitations and Future work . 62

3.6 Conclusions . 63

4 Violin: A Framework for Extensible Block-level Storage 65

4.1 Introduction . 65

4.2 System Architecture . 68

4.2.1 Virtualization Semantics . 68

4.2.2 Violin I/O Request Path . 72

4.2.3 State Persistence . 75

4.2.4 Module API . 78

4.3 System Implementation . 80

4.3.1 I/O Request Processing in Linux . 80

4.3.2 Violin I/O path . 81

4.4 Evaluation . 82

4.4.1 Ease of Development . 82

vii

4.4.2 Flexibility . 84

4.4.3 Performance . 86

4.4.4 Hierarchy Performance . 91

4.5 Limitations and Future work . 93

4.6 Conclusions . 94

5 Orchestra: Extensible, Shared Networked Storage 95

5.1 Introduction . 95

5.2 System Design . 97

5.2.1 Distributed Virtual Hierarchies . 98

5.2.2 Distributed Block-level Sharing . 100

5.2.3 Distributed File-level Sharing . 103

5.2.4 Differences of Orchestra vs. Violin . 105

5.3 System Implementation . 106

5.4 Experimental Results . 108

5.4.1 Orchestra . 109

5.4.2 ZeroFS (0FS) . 113

5.4.3 Summary . 115

5.5 Limitations and Future work . 115

5.6 Conclusions . 116

6 RIBD: Recoverable Independent Block Devices 118

6.1 Introduction . 118

6.2 Motivation . 121

6.2.1 File vs. block level . 121

6.2.2 Roll forward vs. roll backward . 122

6.3 RIBD Overview . 123

6.3.1 System abstraction . 125

6.3.2 Fault model . 126

6.4 Underlying Protocols . 127

6.4.1 Client-server transactional protocol . 127

6.4.2 Versioning protocol . 129

viii

6.4.3 Replication protocol . 131

6.4.4 Lock protocol . 132

6.4.5 Liveness protocol . 132

6.5 System Roll-back and Recovery . 133

6.5.1 Roll-back operation . 133

6.5.2 Network failures . 134

6.5.3 File server/client failures . 135

6.5.4 Disk failures . 136

6.5.5 Disk server failures . 136

6.5.6 Global failures . 137

6.6 System Implementation . 137

6.6.1 ZeroFS (0FS) . 138

6.7 Experimental Platform . 139

6.8 Experimental Results . 142

6.8.1 Overhead of Dependability Protocols . 142

6.8.2 Overhead of Availability . 146

6.8.3 Impact of Outstanding I/Os . 147

6.8.4 Impact on System Resources . 150

6.8.5 Impact of Versioning Protocol . 150

6.8.6 Summary . 152

6.9 Limitations . 153

6.10 Conclusions . 155

7 Conclusions and Future Work 156

7.1 Conclusions . 156

7.2 Future Work . 157

7.2.1 Data and Control Flow from Lower to Higher Layers 157

7.2.2 Block-level Caching and Consistent Client-side Caches 158

7.2.3 Support for High-Availability of Client-side Metadata 158

7.2.4 Security for Virtualized Block-level Storage 158

7.2.5 New methods for ensuring metadata consistency and persistence 159

ix

7.3 Lessons Learned . 159

Bibliography 161

x

List of Tables

2.1 Categorization of existing distributed storage systems. 34

4.1 Linux drivers and Violin modules in kernel code lines. 83

5.1 Orchestra modules in kernel and user-space code lines. 107

5.2 Measurements of individual control operations. Numbers are in µsec. 110

6.1 Client and server module functions in RIBD. 129

6.2 Lines of code (LOC) for RIBD components. 139

6.3 Cluster PostMark workloads. 141

xi

List of Figures

1.1 High-end SAN-based vs. cluster-based storage architectures. 2

1.2 Reliability, Availability and Feature support in decentralized storage clusters. 4

1.3 A virtual device graph in Violin. 11

1.4 A distributed Orchestra hierarchy. 11

1.5 Overview of typical cluster-based scalable storage architectures and RIBD. 15

3.1 Clotho in the block device hierarchy. 43

3.2 Logical space segments in Clotho. 46

3.3 Subextent addressing in large extents. 47

3.4 Translation path for write requests. 50

3.5 Translation path for read requests. 51

3.6 Read translation for compact versions. 52

3.7 Bonnie++ throughput for write, rewrite, and read operations. 56

3.8 Bonnie++ “seek and read” performance. 56

3.9 SPEC SFS response time using 4-KByte extents. 58

3.10 SPEC SFS throughput using 4-KByte extents. 58

3.11 SPEC SFS response time using 32 KByte extents with subextents. 59

3.12 SPEC SFS throughput using 32-KByte extents with subextents. 59

3.13 Random “compact-read” throughput. 61

3.14 Random “compact-read” latency. 61

4.1 Violin in the operating system context. 67

4.2 Violin’s virtual device graph. 69

4.3 The LXT address translation table. 71

xii

4.4 Violin API for LXT and PXB data structures. 72

4.5 Example of request flows (dashed lines) through devices. 73

4.6 Violin API for metadata management. 75

4.7 API methods for Violin’s I/O modules. 78

4.8 Binding of extension modules to Violin. 80

4.9 Path of a write request in Violin. 81

4.10 A hierarchy with advanced semantics and the script that creates it. 85

4.11 IOmeter Results: Raw disk throughput for sequential and random workloads. 86

4.12 IOmeter Results: LVM throughput for sequential and random workloads. 87

4.13 IOmeter Results: RAID-0 throughput for sequential and random workloads. 88

4.14 IOmeter Results: RAID-1 throughput for sequential and random workloads. 89

4.15 PostMark results: Total runtime . 90

4.16 PostMark results: Read throughput . 90

4.17 PostMark results: Write throughput . 91

4.18 IOmeter throughput (read and write) for hierarchy configuration as layers are added. . 92

4.19 IOmeter throughput (70% read and 30% write mix) as layers are added. 93

5.1 A distributed Orchestra hierarchy. 99

5.2 Byte-range mapping process through a hierarchy. 99

5.3 View of the allocator layer’s capacity. 102

5.4 FS clients sharing a distributed volume mapped on many nodes 105

5.5 Configuration for multiple node experiments. 109

5.6 TCP/IP network throughput and latency measured with TTCP. 110

5.7 Orchestra vs. Linux MD performance on direct-attached disks. 111

5.8 Throughput scaling with xdd for the 1x1, 4x4, and 8x8 setups. 112

5.9 Aggregate throughput of 0FS with IOzone. 113

5.10 PostMark results over 0FS for the 1x1, 4x4, and 8x8 setups. 114

6.1 Overview of typical cluster-based scalable storage architectures and RIBD. 119

6.2 Roll forward vs. roll back recovery at the block level. 122

6.3 Pseudo-code for a simple file create operation with one CI. 124

6.4 RIBD system architecture and protocol stack. 128

xiii

6.5 RIBD transactional protocol operation . 130

6.6 RIBD versioning protocol operation . 131

6.7 PostMark CI breakdown to write, unlock operations in RIBD. 142

6.8 IOZone sequential read/write results. 143

6.9 IOZone random read/write results. 144

6.10 IOZone random mixed workload (70% read - 30% write) results. 144

6.11 PostMark aggregate transaction rate (transactions/sec) for workloads A and B. 145

6.12 PostMark: Total data volume that reaches system disks. 146

6.13 IOZone sequential results for 12 clients on RAIN-10 with up to 3 threads per client. . . 147

6.14 IOZone random results for 12 clients on RAIN-10 with up to 3 threads per client. . . . 147

6.15 IOZone random mixed workload results for 12 clients on RAIN-10 148

6.16 PostMark aggregate transaction rate for workload A 148

6.17 PostMark aggregate transaction rate for workload B 149

6.18 PostMark average CPU utilization on the servers and clients for workloads A,B. 151

6.19 PostMark average (read/write) disk latency. 152

6.20 PostMark average total (read and write) throughput per disk. 152

6.21 PostMark average disk utilization across all disks. 153

6.22 PostMark aggregate transaction rate for workload B and four versioning frequencies. . 153

xiv

Chapter 1

Introduction

The beginning of knowledge is the discovery

of something we do not understand.

—Frank Herbert (1920 - 1986)

1.1 Motivation

Data are the lifeblood of computing and an invaluable asset of any organization, which makes data

storage systems a critical component of current computing infrastructures. The significance and the

value of this massive, ever-increasing volume of stored data [IDC, 2008; Lyman and Varian, 2003],

imposes the need for improving the overall quality of data storage systems [Wilkes, 2001; Veitch et al.,

2001].

Increasing requirements for improving storage efficiency and cost-effectiveness introduce the need

for scalable storage systems in a data-center, that consolidate system resources into a single system

image. Consolidation enables easier storage management, continuous system operation, uninterrupted

from device faults, and ultimately lower cost of purchase and maintenance. The need for consolidation

has largely led, over the past decade, to the adoption of storage area networks (SANs) as a popular

solution to improve storage efficiency and manageability [Barker and Massiglia, 2002]. SANs are high-

performance interconnects, enabling many application servers to share a set of disk arrays, as shown in

Figure 1.1(left), and are usually considered synonymous to either Fibre Channel [Jurgens, 1995; Fibre

Channel] or iSCSI [iSCSI] (Ethernet) networks.

However, there are two main issues with SAN-based storage architectures today [Anderson, 1995;

1

CHAPTER 1. INTRODUCTION 2

Storage Node

CPU + RAM

Storage Node

CPU + RAM

Storage Area
Network (SAN)

(FC, iSCSI)
Scalable Commodity

(10GigE, Infiniband,...)
Network

...Application Application

Server Server
...Application Application

Server Server

Storage Array

Dual Controllers

...
Storage Array

Dual Controllers

...

(a)Centralized SAN Storage

...
...

(b)Decentralized Storage Cluster

Figure 1.1: High-end SAN-based vs. cluster-based storage architectures.

Gartner Group, 2000; SNIA]: (i) they are not cost-effective to scale either in capacity or performance,

and (ii) they lack desired functions and advanced features, such as data compression, deduplication or

encryption. The reasons for cost-ineffectiveness are:

1. The centralized architecture of the storage arrays. Storage arrays are based on one or more con-

troller backplanes (two is typical for highly-available configurations), which connect up to a few

hundred disks, to allow scaling in capacity. In order to provide the highest level of performance,

the array controllers are made from high-end customized hardware with high-speed buses and

memory, and run specialized software. As a result they are expensive. However, no controller

today is able to harness the full bandwidth of the maximum number of supported disks, if they

were operating at full speed (e.g. doing sequential reads). The operation of the storage arrays

depends on the fact that in reality, most I/O workloads have a high-degree of randomness which

lead to disk seeks and low disk throughput.

Scaling in capacity to more than a few hundred disks is not feasible simply by adding more storage

arrays and controllers, because storage volumes cannot span storage arrays. In this case, capacity

scaling requires software running on the application server side, either a distributed filesystem, a

software RAID or a volume manager, which aggregates storage volumes across arrays.

2. The cost of scaling custom interconnects used in high-end systems (i.e. Fibre Channel). Cost per

switch port rises super-linearly in large SAN switches, because of the specialized nature of the

interconnect, and the small number of available vendors.

Due to the lack of cost-efficient scalability, high-performance storage systems are evolving from

CHAPTER 1. INTRODUCTION 3

centralized architectures and specialized hardware and interconnects, towards commodity-based scal-

able “decentralized storage clusters” (often referred to also as “storage brick architectures” or “storage

grids”) [HYDRAstor, 2008; Hoffman, 2007]. These systems, shown in Figure 1.1(right), are based

on clusters of many commodity storage nodes with CPU, memory and I/O resources connected via a

scalable, high-throughput, low-latency network, without a central controller [Gray, 2002; IBM Corp.,

2008a; Saito et al., 2004].

The new storage architecture has strong potential for scaling both storage capacity and performance

at reduced cost. Current commodity computers and networks have significant computing power and

network performance, at a fraction of the cost of custom storage-specific hardware (controllers or net-

works) [Gibson et al., 1998]. Using such components, one can build low-cost storage clusters with

enough capacity and performance to meet practically any storage needs, and scale it economically. This

concept has been proposed by several researchers [Gray, 2002; Gibson et al., 1998; Anderson et al.,

1996] and the necessary commodity technologies are maturing now with the emergence of new stan-

dards, protocols and interconnects, such as Serial ATA [SATA], 10-Gbit Ethernet, Infiniband [IBTA],

Myrinet [Myrinet], PCI-X/Express/AS [Zirin and Joe Bennett], ATA over Ethernet (AoE) [Hopkins and

Coile] and iSCSI [ISCSI].

On the other hand, this new architecture poses new challenges, due to the lack of central con-

troller(s). The elimination of all centralization points and increase of I/O request asynchrony is desirable

for performance and scalability purposes; however, it introduces significant challenges that do not exist

in traditional centralized architectures. These challenges impose a new approach and protocols towards

offering availability and strong consistency guarantees for data and metadata [Saito et al., 2004].

The second drawback of traditional, centralized storage systems is the lack of desired functions and

advanced features [SNIA], such as deduplication, compression, encryption or tiered-storage support.

The main reason for this, is that it is difficult and expensive to add advanced features to the array

controllers or the SAN switches, and few storage vendors currently support them.

The ability to add new functions (“extensibility”), and to allow control of which available functions

to use on each volume (“flexibility”), in order to tailor storage to application-specific requirements, is

an important concern, because distinct application domains have diverse storage requirements [Leavitt,

2008; Bigelow, 2007]. Systems designed for the needs of scientific computations, data mining, e-mail

serving, e-commerce, search engines, operating system (OS) image serving or data archival impose

different trade-offs in terms of dimensions such as speed, reliability, capacity, high-availability, security,

CHAPTER 1. INTRODUCTION 4

ASApplication
Server

AS

Scalable Commodity

(10GigE, Infiniband,...)
Network

Scalable Commodity

(10GigE, Infiniband,...)
Network

R
el

ia
b
il

it
y

A
v
ai

la
b
il

it
y

F
u
n
ct

io
n
s

Scalable Commodity

(10GigE, Infiniband,...)
Network

R
el

ia
b
il

it
y

A
v
ai

la
b
il

it
y

F
u
n
ct

io
n
s

Storage Node

RAID

Storage Node

RAID ...

Storage NodeStorage Node

Block−level Virtualization (BLV)

ASApplication
Server

AS ...
ObjFS ObjFSObject FS

Virtualization OLV OLV

ASApplication
Server

AS ...
BLVVirtualization BLV

Filesystem FS FS

...

Storage NodeStorage Node

Object Virtualization

...
F

u
n
ct

io
n
s

A
v
ai

la
b
il

it
y

R
el

ia
b
il

it
y

Clients

...Servers

Cluster Filesystem (CFS)

(a) Cluster Filesystem Approach (b) Object−based Approach (c) Block−level Approach

Figure 1.2: Reliability, Availability and Feature support in decentralized storage clusters.

data sharing and consistency. Tailoring storage to application needs, leads to reduced system cost and

improved efficiency [Leavitt, 2008], yet current centralized systems can not be easily tailored to the

needs of a particular application.

Support for reliability, availability and advanced functionality in decentralized storage clusters can

be provided in either of three system layers: (a) at the filesystem, (b) at the object level, in the case of

object-storage devices [Weber (Editor), 2004, 2007], and (c) at the block-level. These three cases and

the corresponding system layers are illustrated in Figure 1.2.

In the first case, new functionality would be implemented within a cluster filesystem (e.g. GPFS

[Schmuck and Haskin, 2002], Global File System (GFS) [Preslan et al., 1999]) that would run on the

application servers. Functionality in such a filesystem would need to be implemented in a monolithic

[Bonwick and Moore, 2008], or an extensible manner [Heidemann and Popek, 1994; Skinner and Wong,

1993; Zadok and Nieh, 2000]. In the block-level or object-level approaches, functions added would be

implemented at the block or object level (e.g. Lustre [Sun Microsystems, 2007]) and executed either

on the application servers or the storage nodes, with emphasis on the latter. Note also, that solutions

at the object or block level would require changes to the filesystem, although one could argue that the

changes in the block-level case would be less intrusive, involving mainly new control primitives, while

preserving the traditional block-level API for data operations.

Although there are arguments for implementing features in each of the three layers, in this thesis we

decide to follow the block-level approach. We believe that implementing advanced functionality at the

block-level is appropriate for the following reasons:

CHAPTER 1. INTRODUCTION 5

• Transparency to applications and mildly-intrusive changes to filesystems. Users and organiza-

tions are usually unable or reluctant to change their applications and their filesystems, which are

usually expensive and their features tightly controlled by vendors. On the other hand, block-level

operation allows transparent evolution of the storage system.

• The storage hardware at the back-end has evolved significantly from simple disks and fixed con-

trollers to powerful storage nodes [Gray, 2002; Gibson et al., 1998; Acharya et al., 1998] that offer

block-level storage to multiple applications over a high-performance network. Block-level func-

tions can exploit the processing capacity, hardware acceleration engines and memory resources of

these storage nodes, whereas filesystem code (running mainly on the application servers and the

clients) cannot.

• Off-loading the bulk of the processing to the block-level processors, and using the file server CPU

only for coordination and I/O scheduling to individual storage nodes, allows the storage system to

scale as new capacity is added. Furthermore, the cost-effectiveness of the system is increased by

using more cheap commodity hardware instead of the expensive file-server hardware (processors,

RAM, etc.).

• Storage management (e.g. migrating data, backup, redundancy) at the block level is less complex

to implement and easier to administer, because of the unstructured form of data blocks.

• Operating at volume-level granularity is a requirement for many functions, such as compression,

deduplication or encryption, in order to be efficient. Deduplication, for example, would find more

duplicate data blocks when its search scope is an entire volume, than when it is restricted within

a file or a file tree. In these cases of volume-wide optimization, knowledge of the file or object

semantics is useless, and the block level is the right choice.

• Certain CPU-intensive functionality, such as compression, deduplication or encryption, may be

simpler and/or more efficient to provide on unstructured fixed data blocks, rather than variable-

sized files or objects, because (i) hardware accelerators can be more efficiently utilized for fixed-

size blocks rather than variable-sized data, and (ii) blocks being more fine-grain than files or

objects would incur less overhead in partial file reads or updates, where CPU-intensive operations

(e.g. encryption) would be performed only on blocks read or written rather than the whole file

each time.

CHAPTER 1. INTRODUCTION 6

• Current, high-performance disk controllers increasingly implement optimizations or features that

alter the disk layout, such as block remapping [English and Alexander, 1992; Wang et al., 1999;

Wilkes et al., 1996; Sivathanu et al., 2003] or logging [Wilkes et al., 1996; Stodolsky et al.,

1994]. On these systems, many filesystem-level optimizations, such as log-structured writes or

file defragmentation, besides doubling the implementation effort, are usually irrelevant or have

adverse effects on performance. Furthermore, other features are being duplicated in the file and

block layers, such as double caching in the buffer cache and the controller cache, also resulting

in lower performance. These effects are caused by the well known issue of the “information

gap”, between the file and block layers [Denehy et al., 2002]. We believe that due to this gap,

implementing functionality at the block level, and providing an enhanced block-level interface to

the filesystem is advantageous.

The downside of working at the block level is that we have to restrict our system to the traditional

block-level interface and lose the semantics of the file abstraction, and block liveness information [Si-

vathanu et al., 2003, 2004]. A higher-level API, such as objects, could be better in this case, and we are

considering it for future work. However, our aim in this thesis is to explore the limits of the block-level

API, before dealing with higher-level abstractions [Flouris et al., 2005].

1.2 Our Approach

An effective way of dealing with the scalability, reliability, flexibility and extensibility issues of a de-

centralized storage cluster is through block-level virtualization. The term “virtualization” has been used

to describe mainly two concepts in storage systems: indirection and sharing [Flouris et al., 2005]. The

first notion refers to the addition of an indirection layer between the physical resources and the logical

abstractions accessed by applications. Such a layer allows administrators to create, and applications

to access, various types of virtual volumes that are mapped to a set of physical devices on the stor-

age system, while offering higher-level semantics through multiple layers of mappings. This kind of

virtualization has several advantages:

i. It adds flexibility to the system configuration, since physical storage space can be arbitrarily

mapped to virtual volumes. For example a virtual volume can be defined as any combination

of basic operators, such as aggregation, partitioning, striping or mirroring. Thus storage can be

CHAPTER 1. INTRODUCTION 7

tailored to the requirements of a particular application, allowing trade-offs between dimensions

such as speed, reliability, capacity, high-availability, security, data sharing and consistency [Leav-

itt, 2008; Bigelow, 2007].

ii. It enables numerous useful management and reconfiguration operations, such as non-disruptive

data reorganization and migration during the system operation.

iii. It allows off-loading of important functionality from higher layers, such as fault-tolerance with

RAID levels, backup with volume versions or encryption with encryption data filters.

iv. It allows extensibility, that is the addition of new functionality in the system. This is achieved

by implementing new virtualization modules with the desired functions and incrementally adding

them to the system.

Currently, the “indirection” virtualization mechanisms of existing storage systems and products

mostly support a set of predefined functions and leave freedom to the administrator for combining them

[Lee and Thekkath, 1996; MacCormick et al., 2004; Menon et al., 2003]. That is, they provide configu-

ration flexibility, but little extensibility. For example predefined virtualization semantics include virtual

volumes mapped to an aggregation of disks or RAID levels. Both research prototypes of volume man-

agers [De Icaza et al., 1997; EVMS; GEOM; Lehey, 1999; Teigland and Mauelshagen, 2001] as well

as commercial products [EMC Enginuity; EMC Symmetrix; HP OpenView; Veritas, b,c] belong in this

category. In all these cases the storage administrator can switch on or off various features at the volume

level. However, there is no support for extending the I/O protocol stack with new advanced function-

ality, such as versioning, encryption, compression, deduplication, virus-scanning, application-specific

data placement or content hash computation, and it is not possible to combine such new functions in a

flexible manner. The main reason behind this, is that such extensibility with advanced functions requires

support for novel mechanisms, such as dynamic metadata management, end-to-end block-mapping and

advanced control messaging.

Dynamic metadata management is essential in order to support advanced functionality at the virtu-

alized block layer. The “dynamic” term denotes that such metadata, referring to a set of storage blocks,

need to be processed and potentially updated during every block I/O operation. In contrast, some types

of virtualization software, such as software RAID and logical volume managers, require small amounts

of “static” metadata that store configuration information and change only when the system is recon-

figured. A good example of a function that requires dynamic metadata support is online block-level

CHAPTER 1. INTRODUCTION 8

versioning. In this thesis we use block-level versioning as a guide for determining the merits, the mech-

anisms and the overheads associated with metadata-intensive functions at the block level.

The second notion of virtualization refers to the ability of sharing the storage resources across many

hosts and multiple applications without compromising the performance of each application in any sig-

nificant way. A networked filesystem (e.g. NFS) that allows many nodes to share access to the same

files is an example of such a notion. Another example at the block level is a disk volume exported to

multiple hosts via iSCSI [iSCSI] or ATA over Ethernet (AoE) [Hopkins and Coile]. In this case, there

is currently no standard support for sharing volumes across nodes at the block level. Generally, even

though some systems claim to support such sharing, either at the file or block level, efficient virtual-

ization remains an elusive target in large-scale systems, because of the software complexity. Providing

scalable resource sharing and maintaining consistency is complex and usually introduces significant

overheads in the system.

We should note that the two notions of virtualization are orthogonal to each other. That is, an

indirection layer can be used to map physical resources into logical ones, while the sharing layer is used

on top to allow shared access of the logical storage resources to many nodes and applications. This

organization maximizes the flexibility and the accessibility of the system.

1.3 Problems and Contributions

Our hypothesis is that storage virtualization at the block-level with support for metadata management

can be used to build scalable, reliable, available and customizable storage systems with advanced fea-

tures. To prove the hypothesis we address the following problems in a decentralized storage cluster:

1. Providing transparent, low-overhead versioning at the block level.

2. Generic support for advanced, metadata-intensive functionality at the block-level in distributed

storage architectures.

3. Providing mechanisms for concurrent, scalable sharing of block-level storage.

4. Providing availability, replica consistency and recovery after failures.

Our contributions in this thesis at addressing the above problems are:

CHAPTER 1. INTRODUCTION 9

• We explore the mechanisms, the merits, and the overheads associated with metadata-intensive

functions at the block level, with our work on block-level versioning. We find that block-level

versioning has low overhead and offers advantages over filesystem-based approaches, such as

transparency and simplicity.

• We design, implement and evaluate a block-level storage virtualization framework with support

for metadata-intensive functions. We show that our framework, Violin: (i) significantly reduces

the effort to introduce new functionality in the block I/O stack of a commodity storage node, and

(ii) provides the ability to combine simple virtualization functions into hierarchies with semantics

that can satisfy diverse application needs.

We extend our single-node virtualization infrastructure, Violin, to Orchestra, an extended frame-

work that allows almost arbitrary distribution of virtual hierarchies to application and storage

nodes. providing a lot of flexibility in the mapping of system functionality to available resources.

• We design and implement locking and allocation mechanisms for concurrent, scalable sharing of

block-level storage. Our framework supports shared dynamic metadata at the storage node side,

but not at the application servers.

• We address consistency issues at the block level, providing simple abstractions and necessary pro-

tocols. Our approach, RIBD, uses consistency intervals (CIs), a lightweight transactional mech-

anism, agreement, block-level versioning, and explicit locking, to address consistency of both

replicas and metadata. We implement RIBD on a real prototype, in the Linux kernel. In the same

area, we provide a taxonomy of alternative approaches and mechanisms for dealing with replica

and metadata consistency. Finally, we evaluate RIBD in comparison with two popular filesystems,

showing that RIBD performs comparably to systems with weaker consistency guarantees.

Next, in Section 1.4, we provide an overview of our work and contributions. Our contributions are

presented in detail in chapters 3 to 6.

1.4 Overview

In this section we provide an overview of the work presented in the following chapters of the thesis.

CHAPTER 1. INTRODUCTION 10

1.4.1 Block-level versioning

Block-level versioning is a useful virtualization layer that provides transparent versioned volumes that

can be used with multiple, third party, filesystems without the need for modifications. Data versions of

the whole volume can be taken on demand and previous versions can be accessed online simultaneously

with the current version, making recovery instant and easy. Moreover, it reduces complexity in higher

layers of storage systems, namely the filesystem and storage management applications [Hutchinson

et al., 1999]. Finally, it inherits all the block-level advantages mentioned previously in Section 1.2,

such as exploiting the increased processing capabilities and memory sizes of active storage nodes and

off-loading expensive host-processing overheads to the disk subsystem, thus increasing the scalability

of a storage archival system [Hutchinson et al., 1999].

Block-level versioning poses several challenges as well:

1. Memory and disk space overhead: Because we only have access to blocks of information, de-

pending on application data access patterns, there is increased danger for higher space overhead

in storing previous versions of data and the related metadata.

2. I/O path performance overhead: It is not clear at what cost versioning functionality can be pro-

vided at the block level.

3. Consistency of the versioned data when the versioned volume is used in conjunction with a filesys-

tem on top.

4. Versioning granularity: Since versioning occurs at a lower system layer, information about the

content of data is not available, as is, for instance, the case when versioning is implemented in the

filesystem or the application level. Thus, we only have access to versions of whole volumes as

opposed to individual files.

In Chapter 3 we present Clotho a system that provides online versioning at the block level and

addresses all above issues, demonstrating that this can be done at minimal space and performance over-

heads.

1.4.2 Storage resource sharing and management

Scalable storage systems provide a means of consolidating all storage in a single system and increasing

storage efficiency. However, storage consolidation leads to increased requirements for “flexibility” that

CHAPTER 1. INTRODUCTION 11

3DES 3DES

Disk Disk

RAID 1

VERSION

RAID 0AGGR

3DES

Virtual
DiskDisk

Virtual

PART PART

Disk

PART

Disk

Disk
Virtual

VERSION

Disk

3DES

H
ierarchy B

H
ie

ra
rc

hy
 A

Figure 1.3: A virtual device graph in Violin.

���� ����

������������������

S
T

O
R

A
G

E
 N

O
D

E
 N

��������

S
T

O
R

A
G

E
 N

O
D

E
 2

S
T

O
R

A
G

E
 N

O
D

E
 1

Network Channels

...

N
O

D
E

 X

����

A
P

P
LI

C
A

T
IO

N

LOCK LOCK

RAID 0

VERSION PART PART

LOCK

DiskDiskDiskDiskDisk

MIGR

BLOWFISH

LOCK

VirtualVirtualVirtual

ALLOC ALLOC

RAID 0

Hierarchy A

Imported / Exported
Devices:

Distributed

Disk Disk Disk

BLOWFISH

VERSION

Figure 1.4: A distributed Orchestra hierarchy.

will be able to serve multiple applications and their diverse needs. This flexibility refers to both storage

management and application access issues and is usually provided through virtualization techniques:

administrators and applications see various types of virtual volumes that are mapped to physical devices

but offer higher-level semantics through virtualization mechanisms.

In Chapter 4 of this thesis we address this problem by providing a kernel-level framework for (i)

building and (ii) combining virtualization functions. We design, implement, and evaluate Violin (Virtual

I/O Layer INtegrator), a virtual I/O framework for storage nodes that replaces the current block-level

I/O stack with an improved I/O hierarchy that allows for (i) easy extension of the storage hierarchy with

new mechanisms and (ii) flexibly combining these mechanisms to create modular hierarchies with rich

semantics.

Although our approach shares similarities with work in modular and extensible filesystems [Heide-

mann and Popek, 1994; Schermerhorn et al., 2001; Skinner and Wong, 1993; Zadok and Nieh, 2000]

and network protocol stacks [Kohler et al., 2000; Mosberger and Peterson, 1996; O’Malley and Peter-

son, 1992; Van Renesse et al., 1995], existing techniques from these areas are not directly applicable

to block-level storage virtualization. A fundamental difference from network stacks is that the latter are

essentially stateless (except for configuration information) and packets are ephemeral, whereas storage

blocks and their associated metadata need to persist. Compared to extensible filesystems, block-level

storage systems operate at a different granularity, with no information about the relationships and life-

cycle of blocks. Thus, metadata need to be maintained at the block level resulting potentially in large

memory overhead. Moreover, block I/O operations cannot be associated precisely with each other,

limiting possible optimizations.

CHAPTER 1. INTRODUCTION 12

The main contributions of Violin are: (i) it significantly reduces the effort to introduce new func-

tionality in the block I/O stack of a storage node and (ii) it provides the ability to combine simple

virtualization functions into hierarchies with semantics that can satisfy diverse application needs. Vio-

lin provides virtual devices with full access to both the request and completion paths of I/Os allowing for

easy implementation of synchronous and asynchronous I/O. Supporting asynchronous I/O is important

for performance reasons, but also raises significant challenges when implemented in real systems. Also,

Violin deals with metadata persistence for the full storage hierarchy, off-loading the related complexity

from individual virtual devices. To achieve flexibility, Violin allows storage administrators to create

arbitrary, directed acyclic graphs of virtual devices, each adding to the functionality of the successor

devices in the graph. In each hierarchy, the blocks of each virtual device can be mapped in arbitrary

ways to the successor devices, enabling advanced storage functions, such as dynamic block remapping.

An example of a virtual device graph in Violin is shown in Figure 1.3.

In Chapter 4, we evaluate the effectiveness of Violin in three areas: ease of module development,

configuration flexibility, and performance. In the first area we are able to quickly prototype modules for

RAID levels (0, 1 & 5), versioning, partitioning, aggregation, MD5 hashing, migration and encryption.

Further examples of useful functionality that can be implemented as modules include all kinds of en-

cryption algorithms, deduplication, compression, storage virus-scanning modules, online migration and

transparent disk layout algorithms (e.g. log-structured allocation or cylinder group placement). In many

cases, writing a new module is just a matter of recompiling existing user-level library code. Overall,

using Violin encourages the development of simple virtual modules that can later be combined to more

complex hierarchies. Regarding configuration flexibility, we are able to easily configure I/O hierarchies

that combine the functionality of multiple layers and provide complex high-level semantics that are dif-

ficult to achieve otherwise. Finally, we use Postmark [Katcher] and IOmeter [Iometer] benchmarks to

examine the overhead that Violin introduces over traditional block-level I/O hierarchies. We find that

overall, internal modules perform within 10% (in terms of throughput) of their native Linux block-driver

counterparts.

Multi-storage-node Virtualization

Our approach towards a scalable virtualization platform is to enhance the Violin framework with the

necessary primitives in order to allow multi-node (distributed) hierarchies. We find that two primitives

are required to achieve this, locking of layer metadata, and control messaging through the distributed

CHAPTER 1. INTRODUCTION 13

I/O stack.

Orchestra, presented in Chapter 5, builds on Violin and is aimed to take advantage of decentralized

storage architectures. Orchestra allows exporting of storage volumes to other storage nodes through

block-level network protocols, such as iSCSI, NBD or other protocols. The nodes can further build

I/O stacks on top of the remote storage volumes, creating higher-level volumes as needed. Orchestra

manages I/O requests through these distributed hierarchies by the layers distributed to different nodes.

Reliability issues regarding node or device failures are effectively handled by fault-tolerance layers (e.g.

RAID levels) that map storage volumes between nodes or devices. The system can thus tolerate storage

node failures as a RAID system tolerates device failures.

To sum up, our main contribution in this area is that we provide a novel approach for building cluster

storage systems which consolidates system complexity in a single point, the Orchestra hierarchies. In

Chapter 5, we examine how extensible, block-level I/O paths can be supported over distributed storage

systems. Our proposed infrastructure deals with metadata persistence and control messaging, and allows

for hierarchies to be distributed almost arbitrarily over application and storage nodes, providing a lot of

flexibility in the mapping of system functionality to available resources. An example of a distributed

Orchestra hierarchy is shown in Figure 1.4.

1.4.3 Scalable storage distribution and sharing

In this area we examine how sharing can be provided at the block level, that is how multiple hosts and

applications can share storage volumes. Our approach is to design block-level locking and allocation

facilities that can be inserted in Orchestra’s distributed I/O hierarchies where required. A novel feature

of this approach is that allocation and locking are both provided as in-band mechanisms, i.e. they are

part of the I/O stack and are not provided as external services, such as distributed lock managers [Preslan

et al., 2000; Schmuck and Haskin, 2002]. We believe that our approach simplifies the overall design

of a storage system and leaves more flexibility for determining the most appropriate hardware/software

boundary.

Orchestra, presented in Chapter 5, not only supports distributed virtualization hierarchies, but also

implements sharing mechanisms for the virtualized resources on brick-based architectures. Our main

goal for providing such support is to ease the development, deployment, and adaptation of shared storage

services for various environments and application needs. We show that providing flexibility does not

introduce significant overheads and does not limit scalability.

CHAPTER 1. INTRODUCTION 14

In the same chapter we examine how higher system layers can benefit from an enhanced block

interface. Orchestra’s support for distributed block locking, allocation, and metadata persistence can

significantly simplify distributed filesystem design. We design and implement a stateless, pass-through

filesystem, called 0FS, that builds on Orchestra’s advanced features and distributed virtualization mech-

anisms. In particular, this filesystem provides basic file and directory semantics and I/O operations,

while it (i) does not maintain any internal distributed state, and (ii) does not require explicit communi-

cation among its instances running on different nodes.

We find that our approach significantly reduces system complexity by (i) moving many functions

currently performed in higher system layers to the block-level store and (ii) providing an extensible

framework that supports adding simple modules in Orchestra hierarchies that can span storage and

application nodes. Performance-wise, we find that Orchestra introduces little overhead beyond existing,

monolithic implementations that provide the same functionality. Moreover, scalability results show that

our approach has the potential for scaling to large system sizes, because of its block-based, asynchronous

operation.

1.4.4 Reliability and Availability

A decentralized storage architecture is appealing because the elimination of all centralization points

increases I/O request asynchrony and allows the system to scale in capacity and performance. In a

decentralized architecture, however, dealing with failures and always maintaining a consistent state of

the system becomes a real challenge. This is exacerbated by reliance on commodity (and thus less

reliable) equipment. Availability and survivability under system failures in this case is complicated and

may result in significant performance penalties. In our view, there are two main issues in achieving

availability, fault-tolerance and recoverability in a decentralized storage architecture:

• Consistent redundancy scheme: In centralized or single-node storage architectures, consistency

of redundant data used for availability (i.e. replicas, parity or erasure codes) is ensured through a

hardware or software RAID layer that manages redundancy through reliable hardware channels.

A decentralized storage system, however, must ensure the consistency of redundant data (e.g. data

replicas) across storage nodes. Logging or distributed agreement protocols (e.g. voting or two-

phase commit) are used for this purpose in a variety of storage architectures [Saito et al., 2004;

Schmuck and Haskin, 2002; Hartman and Ousterhout, 1992; Liskov et al., 1991].

CHAPTER 1. INTRODUCTION 15

(e.g. Logging, Versioning)
Block Metadata Consistency

(e.g. Logging, Versioning)
FS+Block Metadata Consistency

(Consistency Intervals)
Block−level Interface

Extended

Block−level Interface
Standard

Cluster Filesystem

(e.g. Logging, Versioning)
FS Metadata Consistency

Data Availability & Consistency
(e.g. Replication in GPFS)

Data Availability & Consistency
(e.g. Consistent Network RAID,

Petal, or erasure coding in FAB) (CIs & Consistent Network RAID)

Data Availability & Consistency

an
d

/ o
r

Cluster Filesystem

(b) RIBD(a) Cluster−based Storage System

Figure 1.5: Overview of typical cluster-based scalable storage architectures and RIBD.

• Recovery of data and metadata: A number of component failures should be tolerated and the

system should remain available, depending on the redundancy scheme being used. However, in

the event of a global (non-tolerated) failure, data and system metadata must be recoverable to

a consistent state so that normal system operation can either continue or be restarted without

the need to reconstruct extensive state, e.g. by performing extensive consistency checks at the file

level with fsck. Typically, this problem is addressed by using journaling techniques [Hagmann,

1987; Seltzer et al., 2000; Tweedie, 2000].

Cluster-based storage architectures in use today resemble the structure shown in Figure 1.5-(a)

where a high-level layer such as a filesystem uses the services of an underlying block-level storage

system through a standard block-level interface such as SCSI. Concerns such as data availability and

metadata recovery after failures are commonly addressed through data redundancy (e.g., consistent

replication) at the file or block (or both) layers, and by metadata journaling techniques at the file layer.

This structure, where both redundancy and metadata consistency is built into the filesystem, leads to

filesystems that are complex, hard to scale, debug and tune for specific application domains [Prab-

hakaran et al., 2005a; Yang et al., 2004; Sivathanu et al., 2005a; Prabhakaran et al., 2005b].

Modern high-end storage systems incorporate increasingly advanced features such as thin provi-

sioning [Compellent, 2008; IBM Corp., 2008c], snapshots [IBM Corp., 2008d], volume management

CHAPTER 1. INTRODUCTION 16

[EVMS; GEOM; Teigland and Mauelshagen, 2001], data deduplication [Quinlan and Dorward, 2002],

block remapping [English and Alexander, 1992; Wang et al., 1999; Wilkes et al., 1996; Sivathanu et al.,

2003], and logging [Wilkes et al., 1996; Stodolsky et al., 1994]. The implementation of all such ad-

vanced features requires the use of significant block-level metadata, which are kept consistent using

techniques similar to those used in filesystems (Figure 1.5-(a)). Filesystems running over such ad-

vanced systems often duplicate effort and complexity by focusing on file-level optimizations such as

log-structured writes, or file defragmentation. Besides doubling the implementation and debugging ef-

fort, these file-level optimizations are usually irrelevant or adversely impact performance [Denehy et al.,

2002].

In Chapter 6 we propose Recoverable Independent Block Devices (RIBD), an alternative storage

system structure (depicted in Figure 1.5-(b)) that moves the necessary support for handling both data

and metadata consistency issues to the block layer in decentralized commodity platforms. RIBD ex-

tends Orchestra presented in Chapter 5, introducing the notion of consistency intervals (CIs) to provide

fine-grain consistency semantics on sequences of block level operations by means of a lightweight trans-

action mechanism. Our model of CIs is related to the notion of atomic recovery units (ARUs), which

were defined in the context of a local, centralized system [Grimm et al., 1996]. A key distinction be-

tween CIs and ARUs is that CIs handle both atomicity and consistency over multiple distributed copies

of data and/or metadata, whereas ARUs do not face consistency issues within a single system. RIBD ex-

tends the traditional block I/O interface with commands to delineate CIs, offering a simple yet powerful

interface to the file layer.

One distinctive feature of RIBD is its roll-back recovery mechanism based on low-cost versioning,

that allows recovery and access not only to the latest system state (as journaling does), but to a set of

previous states. This allows recovery from malicious attacks and human errors, as discussed in detail

in Section 3.1. To the best of our knowledge, RIBD is the first system to propose and demonstrate the

combination of versioning and lightweight transactions for recovery purposes at the block storage level.

RIBD has been implemented as a kernel module in the Linux kernel, and evaluated on a cluster of 24

nodes. To understand the overheads in our approach, we compare RIBD with two popular filesystems,

PVFS [Carns et al., 2000] and GFS [Preslan et al., 1999], which however offer weaker consistency

guarantees. We find that RIBD offers a simple and clean interface to higher system layers and performs

comparably to existing solutions with weaker guarantees.

CHAPTER 1. INTRODUCTION 17

1.5 Thesis Organization

The rest of this thesis is organized as follows:

Chapter 2 surveys previous and related work for this thesis.

Chapter 3 presents our work in the block-level versioning area with Clotho, demonstrating the appli-

cations, limits and overheads of metadata-intensive tasks at the block level. The content of this chapter

roughly corresponds to publication [Flouris and Bilas, 2004].

Chapter 4 presents the foundation of our work on single-host block-level virtualization with Violin,

a virtualization framework that allows (i) building and (ii) combining virtualization functions to create

extensible virtual hierarchies. The content of Chapter 4 corresponds roughly to publication [Flouris and

Bilas, 2005].

Chapter 5 presents our work on Orchestra, which extends Violin, allowing distributed placement of

virtualization functions and supporting mechanisms for sharing virtualized storage to many hosts and

applications. The content of this chapter roughly corresponds to publication [Flouris et al., 2008].

Chapter 6 presents our work on Recoverable Independent Block Devices (RIBD), which have been

designed and implemented by extending Orchestra. The content of this chapter, with an early version of

the protocol design and without the implementation and evaluation has been presented in [Flouris et al.,

2006].

Finally, Chapter 7 concludes this thesis and presents directions for future research.

Chapter 2

Related Work

True knowledge exists in knowing that you know nothing.

—Socrates (469 BC - 399 BC)

The idea of moving application-specific or OS-specific code closer to the disks has been proposed

by three different research groups at approximately the same period. “Network-attached secure disks”

(or NASD) [Gibson et al., 1998], IDisks [Keeton et al., 1998] and “active disks” [Acharya et al., 1998]

are based on similar concepts. NASD goes one step further in proposing an object-based storage API

instead of the traditional block-level interface. Several publications on active disks and object storage

devices (OSD) have followed these first projects [Wang et al., 1999; Uysal et al., 2000; Sivathanu et al.,

2002; Yokota, 2000; Akinlar and Mukherjee, 2000]. Although these systems have provided motivation

for our work, there are differences between these approaches and our work, as discussed next.

The Active Disk and IDisks projects propose the use of the on-disk controller specifically for

database and decision support applications. However, the IDisk project has not explored the issues

of what functions would be appropriate for running on the disk controller, what would be their runtime,

and has not evaluated a real or simulated prototypes [Keeton et al., 1998]. On the other hand, the Active

Disk project [Acharya et al., 1998; Uysal et al., 2000] has proposed and evaluated a runtime system

with functions, called disklets, running on the disk controllers. The disklets, however, have very differ-

ent characteristics from the functions we use, and although they run at the block-level, close to the disk,

they cannot be called virtualization functions, for the following reasons: (i) Disklets are executed in a

stream-based, sandboxed runtime, and their code is intended for data-filtering. As such, it is allowed

to deal only with data stream processing, not with metadata. (ii) Disklets are not allowed to allocate

18

CHAPTER 2. RELATED WORK 19

or free memory, to initiate I/O on their own (e.g. for writing metadata), or to change the I/O addresses

of the input or output streams (e.g. to remap blocks as we do in versioning). As a result, the disklet

model would not be appropriate even for writing a simple RAID-0 virtualization function. In contrast,

the virtualization framework we build supports all these operations as well as metadata-management for

I/O blocks.

Object-based storage devices (OSD), although not widely available yet [Mesnier et al., 2003], have

been recently ratified as a new storage standard [Weber (Editor), 2004, 2007]. OSDs provide built-in

support for metadata store and retrieval operations for objects, as well as support for collections of ob-

jects. However, the use of metadata in object storage has been explored mostly for storing file attributes

in objects and providing security for objects, as in NASD [Gibson et al., 1998]. To our knowledge, no

system based on OSDs has explored the use of object metadata for moving advanced metadata-intensive

functionality, such as versioning, deduplication or compression, from the filesystem to the object store.

Moreover, we have no reference of an extensible framework for object-based storage. However, if such

a system is built, we expect that in order to provide extensibility and flexibility transparently, it will use

the mechanisms we use in our block-level framework, such as an extended object command API for

control, logical-to-physical object mappings, and a hierarchy of virtual object-level modules on OSDs.

Also it would have to use similar availability and consistency protocols as the ones we propose. Finally,

it should be mentioned that using our block-level virtualization framework, we can build an OSD layer

with features similar to the ones described in the OSD standards [Weber (Editor), 2004, 2007]. As a

result, we consider our work more generic than an object-level virtualization framework.

Implementing functionality below the block-level API has also been proposed in semantically-smart

disks [Arpaci-Dusseau et al., 2006; Sivathanu et al., 2003]. This approach explores the capability of

inferring, within the block-level subsystem, essential information missing from the higher layers. Such

block-level metadata include block liveness, file system structure and block relationships [Sivathanu

et al., 2004, 2005b]. Knowledge of such information at the block level would enable off-loading of

many useful tasks, such as secure block deletion, data placement optimizations and garbage collection.

The gray-box approach employed by semantically-smart disks is interesting, however, in many cases it

incurs a risk of false inference (e.g. about block liveness in the file system) that may lead to data loss. In

our approach, the goal is not to infer block-level metadata from higher layers, but to provide advanced

functionality at the block level through an enhanced block API.

A block-level virtualization system, and perhaps the closest system to our work regarding the virtu-

CHAPTER 2. RELATED WORK 20

alization aspects, is Petal [Lee and Thekkath, 1996] and its distributed filesystem Frangipani [Thekkath

et al., 1997]. Petal’s main focus was making storage management easier and for this reason it provides

some advanced functionality features, such as dynamically configuring and reconfiguring virtual disk

volumes over a pool of physical disk storage, automatically adding to or removing physical disks from

the pool, providing high-availability with chained declustering and providing block-level versioning

using copy-on-write and storing metadata for blocks.

Regarding block-level versioning, our scheme is close to Petal’s, however our algorithm has lower

overhead, because it does not perform copy-on-write, but rather remap-on-write, using at the same time

sub-extent bitmaps showing the valid sub-extents. We thus avoid the copy on each write, trading disk

capacity with write performance. On the other hand the remap-on-write approach alters data placement

and may affect read performance. Moreover, in contrast to Petal, we propose, implement and evaluate

differential compression for blocks belonging to subsequent versions in order to increase disk space

efficiency.

In terms of features, we can classify Petal as being rich in features and supporting dynamic metadata

for blocks, however its feature set is fixed, that is, it is not extensible. Instead, we support modular

hierarchies, flexible to configure and easy to add new functionality, such as deduplication, encryption, or

tiered-storage. Thus, while we can create volumes with application-specific functionality, Petal cannot.

Also, metadata in our system depend on the stack of functions used in a volume and are not of a fixed

size, potentially consuming resources, when the application does not use all features.

In Orchestra, presented in Chapter 5, we offer block-level sharing mechanisms for virtual vol-

umes. Petal-Frangipani does not offer such block-level mechanisms, but uses filesystem-based locking,

through a lock service. An advantage of our in-band, block-level locking at the storage nodes, is that

it can scale as more nodes are added. Moreover, Petal-Frangipani implements the distributed block

allocation at the filesystem level, while we provide it through an in-band mechanism at the block level.

Petal uses write-ahead logging for determining replica consistency after failures. We, on the other

hand, propose and evaluate a lightweight transactional API coupled with low-overhead block-level ver-

sioning. We believe that our approach offers the same strong consistency guarantees with scalable

performance, since versioning is a particularly promising approach for building reliable storage systems

as it matches current disk capacity/cost tradeoffs.

In the rest of this chapter we examine previous and related work for each of the Chapters 3 to 6 of

this thesis. Section 2.1 presents previous work related to block-level versioning, such as WAFL [Hitz

CHAPTER 2. RELATED WORK 21

et al., 1994], SnapMirror [Patterson et al., 2002], Petal [Lee and Thekkath, 1996], Venti [Quinlan and

Dorward, 2002] and CVFS [Soules et al., 2003]. Work related to (a) extensible filesystems (e.g. Fi-

cus [Heidemann and Popek, 1994], Vnodes [Skinner and Wong, 1993], FiST [Zadok and Nieh, 2000]),

(b) extensible network protocols (e.g. Click Router [Kohler et al., 2000], X-kernel [O’Malley and Pe-

terson, 1992], Horus [Van Renesse et al., 1995]), and (c) block-level storage virtualization (e.g. EVMS

[EVMS], GEOM [GEOM]) is presented in Section 2.2. Previous work on shared cluster storage sys-

tems (e.g. Petal-Frangipani [Lee and Thekkath, 1996; Thekkath et al., 1997], Boxwood [MacCormick

et al., 2004], Swarm [Hartman et al., 1999]) is discussed in Section 2.3. Finally, work related to consis-

tency and availability issues in cluster storage systems and a detailed taxonomy of existing solutions is

presented in Section 2.4.

2.1 Clotho: Block-level Versioning

A number of projects have highlighted the importance and issues in storage management [Gray, 1999;

Kubiatowicz et al., 2000; Patterson, 2000; Wilkes, 2001]. Our goal in Clotho, presented in Chapter 3,

is to define innovative functionality that can be used in future storage protocols and APIs to reduce

management overheads.

Block-level versioning was recently discussed and used in WAFL [Hitz et al., 1994], a filesystem

designed for Network Appliance’s NFS appliance. WAFL works in the block-level of the filesystem

and can create up to 20 snapshots of a volume and keep them available online through NFS. However,

since WAFL is a filesystem and works in an NFS appliance, this approach depends on the filesystem. In

Chapter 3 we demonstrate that Clotho is filesystem agnostic by presenting experimental data with two

production-level filesystems. Moreover, WAFL can manage a limited number of versions (up to 20),

whereas Clotho can manage a practically unlimited number. Hitz et al. [Hitz et al., 1994] mention that

WAFL’s performance cannot be compared to other general purpose filesystems, since it runs on a spe-

cialized NFS appliance and much of its performance comes from its NFS-specific tuning. Hutchinson et

al. [Hutchinson et al., 1999] use WAFL to compare the performance of filesystem- and block-level-based

snapshots (within WAFL). They advocate the use of block-level backup, due to cost and performance

reasons. However, they do not provide any evidence on the performance overhead of block-level ver-

sioned disks compared to regular, non-versioned block devices. In Chapter 3 we thoroughly evaluate

this with both micro-benchmarks as well as standard workloads. SnapMirror [Patterson et al., 2002]

CHAPTER 2. RELATED WORK 22

is an extension of WAFL, which introduces management of remote replicas in WAFL’s snapshots to

optimize data transfer and ensure consistency.

Venti [Quinlan and Dorward, 2002] is a block-level network storage service, intended as a repository

for backup data. Venti follows a write-once storage model and uses content based addressing by means

of hash functions to identify blocks with identical content. Instead, Clotho uses differential compression

concepts. Furthermore, Venti does not support versioning features. Clotho and Venti are designed to

perform complementary tasks, the former to version data and the latter as a repository to store safely the

archived data blocks over the network.

Distributed block-level versioning support was included in Petal [Lee and Thekkath, 1996]. Al-

though Petal’s versioning concepts are similar to Clotho, Petal uses a copy-on-write algorithm, while

we propose remap-on-write and subextent addressing to minimize both write overhead and memory

footprint. Moreover, in contrast to Petal, we propose, implement and evaluate differential compression

for blocks belonging to subsequent versions in order to increase disk space efficiency.

Since backup and archival of data is an important problem, there are many products available that try

to address the related issues. However, specific information about these systems and their performance

with commodity hardware, filesystems, or well-known benchmarks are scarce. LiveBackup [Storactive,

2002] captures changes at the file level on client machines and sends modifications to a back-end server

that archives previous file versions. EMC’s SnapView [SnapView] runs on the CLARiiON storage

servers at the block level and uses a ”copy-on-first-write” algorithm. However, it can capture only up

to 8 snapshots and its copy algorithm does not use logging block allocation to speed up writes. Instead,

it copies the old block data to hidden storage space on every first write, overwriting another block.

Veritas’s FlashSnap [Veritas, a] software works inside the Veritas File System, and thus, unlike Clotho,

is not filesystem agnostic. Furthermore it supports only up to 32 snapshots of volumes. Sun’s Instant

Image [Sun Microsystems, 2008] works also at the block-level in the Sun StorEdge storage servers.

Its operation appears similar to Clotho. However, it is used through drivers and programs in the Sun’s

StorEdge architecture, which runs only through the Solaris architecture and is also filesystem aware.

Each of the above systems, especially the commercial ones, uses proprietary customized hardware

and system software, which makes comparisons with commodity hardware and general purpose oper-

ating systems difficult. Moreover, these systems are intended as standalone services within centralized

storage appliances, whereas Clotho is designed as a transparent autonomous block-lever layer for active

storage devices and appropriate for pushing functionality closer to the physical disk. In this direction,

CHAPTER 2. RELATED WORK 23

Clotho categorizes the challenges of implementing block-level versioning and addresses the related

problems.

De Jonge et al. [De Jonge et al., 1993] examine the possibility of introducing an additional layer

in the I/O device stack to provide certain functionality at lower system layers, which also affect the

functionality that is provided by the filesystem. Other efforts in this direction mostly include work in

logical volume management and storage virtualization that try to create a higher level abstraction on-top

of simple block devices. Teigland et al. [Teigland and Mauelshagen, 2001] present a survey of such

systems for Linux. Such systems usually provide the abstraction of a block-level volume that can be

partitioned, aggregated, expanded, or shrunk on demand. Other such efforts [De Icaza et al., 1997] add

RAID capabilities to arbitrary block devices. Our work is complementary to these efforts and proposes

adding versioning capabilities to the block-device level.

Other previous work in versioning data has mostly been performed either at the filesystem layer or

at higher layers. Santry et al. [Santry et al., 1999] propose versioning of data at the file level, discussing

how the filesystem can transparently maintain file versions as well as how these can be cleaned up.

Moran et al. [Moran et al., 1993] try to achieve similar functionality by providing mount points to

previous versions of directories and files. They propose a solution that does not require kernel-level

modification but relies on a set of user processes to capture user requests to files and to communicate

with a back-end storage server that archives previous file versions. Other, similar efforts [Olson, 1993;

Pike et al., 1990; Roome, 1992; Soules et al., 2003; Strunk et al., 2000] approach the problem at the

filesystem level as well and either provide the ability for checkpointing of data or explicitly manage

time as an additional file attribute.

Self-securing storage [Strunk et al., 2000] and its filesystem, CVFS [Soules et al., 2003] target secure

storage systems and operate at the filesystem level. Some of the versioning concepts in self-securing

storage and CVFS are similar to Clotho, but there are numerous differences as well. The most significant

one is that self-securing storage policies are not intended for data archiving and thus, retain versions of

data for a short period of time called detection window. No versions are guaranteed to exist outside this

window of time and no version management control is provided for specifying higher-level policies.

CVFS introduces certain interesting concepts for reducing metadata space, which however, are also

geared towards security and are not intended for archival purposes. Since certain concepts in [Soules

et al., 2003; Strunk et al., 2000] are similar to Clotho, we believe that a block-level self-secure storage

system could be based on Clotho, separating the orthogonal versioning and security functionalities in

CHAPTER 2. RELATED WORK 24

different subsystems.

Systems more recent than Clotho, such as the VDisk [Wires and Feeley, 2007], have focused on

“secure” versioning st the block level, where the versioning layer is protected within a virtual machine.

The advantage of the VDisk is that storage data and metadata are additionally protected from operating

system bugs that may cause corruption. On the other hand, VDisk uses expensive metadata management

techniques which result to 50% performance penalty on block writes. We believe that similar protection

from operating system faults with a much lower overhead, can be provided by encapsulating Clotho in

a virtual machine or by embedding it in a hardware disk controller.

2.2 Violin: Extensible Block-level Storage

In this section we comment on previous and related work on (a) extensible filesystems, (b) extensible

network protocols, and (c) block-level storage virtualization.

2.2.1 Extensible filesystems

Storage extensions can be implemented at various levels in a storage system. The highest level is within

the filesystem, where combined software layers implement the desired functionality. The concept of

layered filesystems has been explored in previous research.

Ficus [Heidemann and Popek, 1994], one of the earliest approaches, proposes a filesystem with a

stackable layer architecture, where desired functionality is achieved by loading appropriate modules. A

later approach [Skinner and Wong, 1993] proposes layered filesystem implementation by extending the

vnode/VFS interface to allow “stacking” vnodes. A similar concept at the user-level, was proposed in

the recent Mona FS [Schermerhorn et al., 2001], which allows application extensions to files through

streaming abstractions. Another recent approach, FiST [Zadok and Nieh, 2000], uses a high-level spec-

ification language and a compiler to produce a filesystem with the desired features. FiST filesystems are

built as extensions on top of baseFS, a native low-level filesystem. A similar concept was used in the

Exokernel [Kaashoek et al., 1997], an extensible OS that comes with XN, a low-level in-kernel storage

system. XN allows users to build library filesystems with their desired features. However, developing

library filesystems for the Exokernel requires significant effort and can be as difficult as developing a

native monolithic FS for an operating system.

Our work on Violin, presented in Chapter 4, shares similarity with these approaches to the extent that

CHAPTER 2. RELATED WORK 25

we are also dealing with extensible storage stacks. However, the fact that we operate at the block-level

in the storage system requires that our framework, provides different APIs to modules, uses different

I/O abstractions for its services, and different kernel facilities in its implementation. Thus, although the

high level concept is similar to extensible filesystems, the challenges faced and solutions provided are

different.

Implementing storage extensions at either the filesystem level or the storage system level is desir-

able, each for different reasons and each approach is not exclusive of the other. The basic pros and cons

of each approach stem from the API and metadata each level is aware of. One fundamental characteristic

of filesystems, for example, is that they have file metadata. Thus, they can associate blocks that belong

to the same file and are able to provide policies at the file level. On the other hand, storage systems

operate at the block-level and they have no information about the relationships of blocks. Thus, meta-

data need to be maintained at the block level resulting potentially in large memory overhead. Moreover,

block I/O operations cannot be associated precisely with each other, limiting possible optimizations.

On the positive side, block-level extensions are transparent to any filesystem and volume-level policies

can be provided. Moreover, many block-level functions, e.g. encryption or RAID-levels, can operate

faster than at the filesystem level, since they operate on raw fixed-size blocks and not on the structured

variable-sized data of the filesystem.

2.2.2 Extensible network protocols

Our work on storage virtualization shares similarities with frameworks for layered network stacks. The

main efforts in this direction are the Click Router [Kohler et al., 2000], X-kernel [O’Malley and Peter-

son, 1992], and Horus [Van Renesse et al., 1995]. All three approaches aim at building a framework

for synthesizing network protocols from simpler elements. They use a graph representation for layering

protocols, they envision simple elements in each protocol, and provide mechanisms for combining these

simple elements in hierarchies with rich semantics and low performance overhead. Scout [Mosberger

and Peterson, 1996] is a communication-centric OS, also supporting stackable protocols. The main ab-

straction of Scout is the I/O paths between data sources and sinks, an idea applicable both to network

and storage stacks.

In Violin we are interested in providing a similar framework for block-level storage systems. We

share the same observation that there is an increased need to extend the functionality of block-level

storage (network protocol stacks) and that doing so is a challenging task with many implications on

CHAPTER 2. RELATED WORK 26

storage (network) infrastructure design. However, the underlying issues in network and storage stacks

are different:

• Network stacks distinguish flows of self-contained packets, while storage stacks cannot distin-

guish flows, but map data blocks from one device to another.

• Network and storage stacks exhibit fundamentally different requirements for state persistence.

Network stacks do not need to remember where they scheduled every packet in order to recover

it at a later time, and thus, do not require extensive metadata. On the other hand, storage stacks

must be able to reconstruct the data path for each I/O request passing through the stack, requiring

often times large amounts of persistent metadata.

• Send and receive paths in network protocol stacks are fairly independent, whereas in a storage hi-

erarchy there is strong coupling between the request and completion paths for each read and write

request. Moreover, an issue not present in network protocol stacks is the need for asynchronous

handling of I/O requests and completions, which introduces additional complexity in the system

design and implementation.

2.2.3 Block-level storage virtualization

The most popular virtualization software is volume managers. The two most advanced open-source

volume managers currently are EVMS and GEOM. EVMS [EVMS], is a user-level distributed volume

manager for Linux. It uses the MD [De Icaza et al., 1997] and device-mapper kernel modules to support

user-level plug-ins called features. However, it does not offer persistent metadata or block remapping

primitives to these plug-ins. Moreover, EVMS focuses on configuration flexibility with predefined

storage semantics (e.g. RAID levels) and does not easily allow generic extensions (e.g. versioning).

GEOM [GEOM] is a stackable BIO subsystem under development for FreeBSD. The concepts behind

GEOM are, to our knowledge, the closest to Violin. However, GEOM does not support persistent

metadata which, combined with dynamic block mapping, are necessary for advanced modules such as

versioning discussed in Chapter 3. LVM [Teigland and Mauelshagen, 2001] and Vinum [Lehey, 1999]

are simpler versions of EVMS and GEOM. Violin has all the configuration and flexibility features of

a volume manager coupled with the ability to write extension modules with arbitrary virtualization

semantics.

CHAPTER 2. RELATED WORK 27

Besides open-source software, there exist numerous virtualization solutions in the industry. HP

OpenView Storage Node Manager [HP OpenView] helps administrators control, plan, and manage

direct-attached and networked storage, acting as a central management console. EMC Enginuity [EMC

Enginuity], a storage operating environment for high-end storage clusters, employs various techniques

to deliver optimized performance, availability and data integrity. Veritas Volume Manager [Veritas, c]

and Veritas File System aim at assisting with online storage management. Similar to other volume

managers, physical disks can be grouped into logical volumes to improve disk utilization and eliminate

storage-related downtime. Moreover, administrators have the ability to move data between different

storage arrays, balance I/O across multiple paths to improve performance, and replicate data to remote

sites for higher availability. However, in all cases, the offered virtualization functions are predefined

and they do not seem to support extensibility of the I/O stack with new features. For instance, EMC En-

ginuity currently supports only the following predefined data protection options: RAID-1, Parity RAID

(1 parity disk per 3 or 7 data disks), and RAID-5 [EMC Symmetrix].

RAIDframe [CourtrightII et al., 1996] enables rapid prototyping and evaluation of RAID architec-

tures, which is similar to, but narrower than, our goals. RAIDframe uses a DAG representation for

specifying RAID architectures, similar to Violin. However, its goal is to evaluate certain architectural

parameters (encoding, mapping, caching) and not to provide extensible I/O hierarchies with arbitrary

virtualization functions.

The latest versions of the Windows OS support an integrated model for building device drivers, the

Windows Driver Model (WDM) [Oney]. This model specifies the runtime support available to writers of

device drivers. However, unlike Violin for block-level devices, it only provides generic kernel support

and does not include functionality specific to storage.

Research in virtual machines, such as [Barham et al., 2003; Sugerman et al., 2001] aims at virtual-

izing hardware resources so that multiple instances of the same I/O resource are shared in a safe manner

by different instances of the same or different operating systems. Our work is orthogonal and aims at

providing additional functionality on top of disk storage resources and within a single operating system.

2.3 Orchestra: Extensible Networked-storage Virtualization

In this section we present previous and related work on building storage systems for high performance

clusters of servers. Next, we discuss the limitations of current, conventional solutions and we review

CHAPTER 2. RELATED WORK 28

prototypes that share similar goals with Orchestra, contrasting our approach to other contributions.

2.3.1 Conventional cluster storage systems

Currently, building scalable storage systems that provide storage sharing for multiple applications relies

on layering a distributed filesystem on top of a pool of block-level storage. This approach is dictated by

the fact that block-level storage has limited semantics that do not allow for performing advanced storage

functions and especially they are not able to support transparent sharing without application support.

Efforts in this direction include distributed cluster file systems often based on VAXclusters [Kro-

nenberg et al., 1986] concepts that allow for efficient sharing of data among a set of storage servers

with strong consistency semantics and fail-over capabilities. Such systems typically operate on top of a

pool of physically shared devices through a SAN. However, they do not provide much control over the

system’s operation.

Modern cluster filesystems such as the Global File System (GFS) [Preslan et al., 1999] and the

General Parallel File System (GPFS) [Schmuck and Haskin, 2002] are used extensively today in medium

and large scale storage systems for clusters. However, their complexity makes them hard to develop and

maintain, prohibits any practical extension to the underlying storage system, and forces all applications

to use a single, almost fixed, view of the available data. In this chapter we examine how such issues can

be addressed in future storage systems.

The complexity of cluster filesystems is often mitigated by means of a logical volume manager

which virtualizes the storage space and allows transparent changes to the mappings between data and

devices while the system is on-line. The two most advanced open-source volume managers currently

are EVMS and GEOM. EVMS [EVMS] is a user-level distributed volume manager for Linux. It uses

the MD [De Icaza et al., 1997] and device-mapper kernel modules to support user-level plug-ins. Re-

cent versions offer persistent metadata and block re-mapping primitives to these plug-ins. However,

EVMS does not support generic extensions (such as versioning or advanced reliability features), un-

like Orchestra. GEOM [GEOM] is a single-node stackable block I/O subsystem under development for

FreeBSD. The basic I/O stack concepts of GEOM are similar to Orchestra, however, GEOM does not

support distributed hierarchies, volume sharing or persistent metadata which, combined with dynamic

block mapping are necessary for advanced modules such as versioning, presented in Chapter 3.

Beyond open-source software, there exist numerous commercial virtualization solutions as well,

such as HP OpenView Storage Node Manager [HP OpenView], EMC Enginuity [EMC Enginuity] and

CHAPTER 2. RELATED WORK 29

Veritas Volume Manager [Veritas, c]. However, in all cases, the offered virtualization functions are

predefined and there is no support for extending the I/O stack with new features.

In contrast, Orchestra, presented in Chapter 5, has all the configuration and flexibility features of

a volume manager coupled with the ability to write extension modules with arbitrary virtualization

semantics.

2.3.2 Flexible support for distributed storage

To overcome the aforementioned limitations of the traditional tools, a number of research projects have

aimed at building scalable storage systems by defining more modular architectures and pushing func-

tionality towards the block-level.

A popular approach is based on the concept of a shared virtual disk [Shillner and Felten, 1996;

Lee and Thekkath, 1996; MacCormick et al., 2004], which handles most of the critical concerns in dis-

tributed storage systems, including fault-tolerance, dynamic addition or removal of physical resources,

and sometimes (consistent) caching. In this way, the design of the filesystem can be significantly sim-

plified. However, most of the complexity is pushed to the level of the virtual disk (assisted sometimes

by a set of external services, e.g. for locking or consensus), whose design remains monolithic.

Our work on Orchestra bears similarity with this approach, and in particular with Petal-Frangipani

[Lee and Thekkath, 1996; Thekkath et al., 1997] in that all filesystem communication happens through

a distributed volume layer, simplifying filesystem design and implementation. However, contrary to

Frangipani which uses an out-of-band lock server and allocates blocks through the FS, Orchestra per-

forms locking as well as block allocation through the block layer. We believe that this in-band manage-

ment of all the core functions is an important feature, which leaves more freedom to system designers

regarding the hardware/software boundary of a storage system. Thus, different trade-offs can be ex-

plored more quickly because all the functionalities exported by the virtual volume are built from a stack

of modules. Moreover, Orchestra allows storage systems to provide varying functionality through vir-

tual hierarchies and also increases flexibility and control in distributing many storage layers to a number

of (possibly cascaded) storage nodes.

Device-served locks have been envisioned in the past, notably in the context of GFS, which led to the

specifications of the DMEP/DLOCK SCSI commands [Preslan et al., 2000]. However, DMEP/DLOCK

capabilities never really became a reality due to the reluctance of the storage vendors to evolve the

interface of their products. Unlike these past efforts, our propositions do not require any hardware

CHAPTER 2. RELATED WORK 30

modification and enables a broader range of constructs (such as hierarchical locking) so as to allow

more scalability.

Recent research has investigated more deeply the modular approach for building cluster storage sys-

tems, in particular with the Swarm [Hartman et al., 1999] and Abacus [Amiri et al., 2000] projects. How-

ever, Swarm does not enable data sharing among multiple (client) nodes. Besides, due to its log-based

interface to storage devices, Swarm leaves little freedom regarding the placement of most modules:

much of the functionality is pushed on the client side. Abacus has mostly focused on optimal, dynamic

function placement through automatic migration of components. However, to the best of our knowledge,

it has not addressed issues, such as functional extensibility and simplified metadata management.

Furthermore, a number of frameworks for extensible files systems have been proposed [Heidemann

and Popek, 1994; Schermerhorn et al., 2001; Skinner and Wong, 1993; Zadok and Nieh, 2000]. How-

ever, these proposals have been limited to schemes relying on a central server, which are not well suited

in data-centers, where scalability is a primary concern. While we strive to present a single system im-

age to the clients, our work targets large storage systems based on a distributed (and more scalable)

topology.

2.3.3 Support for cluster-based storage

A number of research projects have explored the potential of decentralized storage systems made of a

large number of nodes with increased processing capabilities.

One of the pioneering efforts in this regard is based on Object-based Storage Devices (OSD). The

OSD approach defines an object structure that is understood by the storage devices, and which may

be implemented at various systems components, e.g. the storage controller or the disk itself. Our

approach does not specify fixed groupings of blocks, i.e. objects. Instead, it allows virtual modules to

use metadata and define block groupings dynamically, based on the module semantics. These groupings

and associations may occur at any layer in a virtual storage hierarchy. For instance, a versioning virtual

device (e.g. Clotho presented in Chapter 3) may be inserted either at the application server or storage

node side and specifies through its metadata which blocks form each version of a specific device. In

addition, our propositions do not necessarily require modifications of the current interface of storage

devices.

In both approaches, allocation occurs closer to the block-level. In OSD, objects are allocated by

the storage device, whereas in Orchestra by a virtual module that is inserted in the storage hierarchy.

CHAPTER 2. RELATED WORK 31

In terms of locking, and to the best of our knowledge, the current OSD specification [Weber (Editor),

2004] does not state explicitly how mutual exclusion should be provided, however, object attributes may

be used to implement mutual exclusion mechanisms on top of it. In Orchestra, similarly to allocation,

locking is provided by a new virtual module that is inserted to the storage hierarchy on demand. OSD

specifies that object devices perform protection checking, whereas in Orchestra we envision that, beyond

traditional permissions in the filesystem, protection will also be provided by custom virtual modules at

fine granularity.

Overall, Orchestra shares many goals with OSD in enriching the semantics of the block-level. How-

ever, our approach allows for more flexibility on how storage devices are “composed” from distributed

physical disks and, as we explore in this chapter, facilitates simpler cluster filesystem design.

Ursa Minor [Abd-El-Malek et al., 2005], a system for object-based storage bricks coupled with a

central manager, provides flexibility with respect to the data layout and the fault-model (both for client

and storage nodes). These parameters can be adjusted dynamically on a per data item basis, according

to the needs of a given environment. Such fine grain customization yields noticeable performance

improvements. However, the system imposes a fixed architecture based on a central metadata server

that could limit scalability and robustness, and is not extensible, i.e. the set of available functions and

reconfigurations is pre-determined.

The Federated Array of Bricks (FAB) [Saito et al., 2004] discusses how storage systems may be

built out of commodity storage nodes and interconnects and yet compete (in terms of reliability and

performance) with custom, high-end solutions for enterprise environments. Overall, we share similar

objectives. However, FAB has mostly investigated optimized protocols for consistent updates to replicas

and quick background recovery using a non-extensible, out-of-band approach, while our main focus is to

examine how future block-level systems can be tailored to support changing application needs without

compromising transparency and scale.

Previous work has also investigated a number of issues raised by the lack of a central controller and

the distributed nature of cluster-based storage systems, e.g. consistency for erasure-coded redundancy

schemes [Amiri et al., 2000] and efficient request scheduling [Lumb et al., 2004]. We consider these

concerns to be orthogonal to our work but we note that the existing solutions in these domains could be

implemented as modules within our framework.

Finally, our design of the block allocator, described in Section 5.2.2, bears similarity with Hoard

[Berger et al., 2000], a scalable memory allocator for multi-threaded applications. Both systems par-

CHAPTER 2. RELATED WORK 32

tition the address space in regions, called “supernodes” by Hoard and “allocation zones” in Orchestra

and can scale to many processes or nodes. However, since Hoard was designed for allocating memory,

its operation is designed according to the memory hierarchy characteristics, such as cache misses. On

the other hand, Orchestra’s allocator considers networked storage characteristics, such as the latency

of locking regions, and data placement because of the performance difference between sequential and

random access to disks.

2.3.4 Summary

Overall, current approaches have important limitations. First, block-level virtualization systems tend

to provide simple semantics, and rely on higher-level layers to deal with consistent and structured data

sharing. Moreover, cluster filesystems are complex and monolithic, which makes it very challenging to

tune them for specific application needs. Recent work on cluster-based storage has mostly investigated

issues related to reliability, security, and performance optimizations. However, to the best of our knowl-

edge, techniques for building highly configurable storage systems from (distributed) block devices have

received far less attention.

2.4 RIBD: Taxonomy and Related Work

In this section we present a taxonomy of existing and possible solutions for handling data replica and

metadata consistency issues in distributed storage systems. We are interested in solutions that (1) as-

sume no centralization point in the data path from clients to data and (2) deal with data replication for

availability purposes. Then we discuss related work on RIBD.

2.4.1 Taxonomy of existing solutions

First, we categorize solutions based on two high-level parameters used for recovering the whole system

to a consistent state after a failure: (a) recovering data replicas to a consistent state and (b) ensuring

consistency of metadata and possibly data as well.

Data replica consistency: This problem can be addressed either by extending the block or the filesys-

tem. In either case, it is necessary to ensure that read operations to different disk servers, will always

return consistent block contents after a failure. This requires the file or block level to know after a failure

CHAPTER 2. RELATED WORK 33

that may have resulted in updating only a subset of the replicas, which replica is the right one to use for

subsequent requests. The first approach, file-level replication (FLR), requires the filesystem on the node

performing the I/O to be aware of replica placement and management, eliminating the possibility of pro-

viding replication by various RAID options at the block level. The later, block-level replication (BLR)

complicates replica updates, as it introduces dependencies among updates in different disk servers.

When replication happens at the block level, then it can apply to all blocks of a volume, both data

and metadata. File-level replication can either refer to metadata only (FR-M) or both data and metadata

(FR-MD), as in practice it does not make sense to only replicate data blocks.

Metadata consistency: This issue can be addressed either by logging operations and rolling forward

(RF) after a failure by replaying logged operations or by maintaining multiple versions of data and

rolling backwards (RB) to a previously consistent state of the system after a failure. Either approach

can be implement at the file level (FC) or the block level (BC), leading to four options: FC-RF, FC-RB,

BC-RF, BC-RB.

Finally, in this taxonomy, we do not distinguish between systems that log only metadata or both

metadata and data. Both types of system would be able to recover to a consistent state after a failure.

Table 2.1 categorizes some existing systems based on this taxonomy. There are various observations

we can make:

First, there is a number of systems [PVFS2; Nieuwejaar and Kotz, 1996; White et al., 2001; Menon

et al., 2003] that focus on scalability and performance, leaving reliability and availability issues to other

layers in the system. Typically, these systems assume that underlying storage devices do not fail or

deal with failures themselves and that metadata consistency is either maintained by avoiding associated

problems (e.g. with centralized, synchronous operations) or is provided by other system layers [Menon

et al., 2003].

Second, most systems that deal with failures themselves provide metadata consistency by using file-

level roll-forward techniques, either based on logs or shadow buffers. These systems vary mostly in their

assumptions about replication of storage and fall in all possible categories: Systems that do not replicate

storage assuming that the underlying devices are reliable [Sun Microsystems, 2007; Devarakonda et al.,

1996], systems that replicate only file metadata [Preslan et al., 1999; Mitchell and Dion, 1982; Brown

et al., 1985], systems that replicate both metadata and data either at the file level [Schmuck and Haskin,

2002; Hartman and Ousterhout, 1992; Liskov et al., 1991], or at the block level [Thekkath et al., 1997;

CHAPTER 2. RELATED WORK 34

N
O

N
E

FC
-R

F
FC

-R
B

B
C

-R
F/

R
B

N
O

N
E

PV
FS

2
[P

V
FS

2]
G

FS
[P

re
sl

an
et

al
.,

19
99

]

G
al

le
y

[N
ie

uw
ej

aa
r

an
d

K
ot

z,
19

96
]

L
us

tr
e

[S
un

M
ic

ro
sy

st
em

s,
20

07
]

ST
[M

en
on

et
al

.,
20

03
]

C
al

yp
so

[D
ev

ar
ak

on
da

et
al

.,
19

96
]

L
eg

io
n

[W
hi

te
et

al
.,

20
01

]

FR
-M

X
D

FS
[M

itc
he

ll
an

d
D

io
n,

19
82

]

A
lp

in
e

[B
ro

w
n

et
al

.,
19

85
]

C
FS

[M
itc

he
ll

an
d

D
io

n,
19

82
]

FR
-M

D
G

PF
S

Z
FS

[S
ch

m
uc

k
an

d
H

as
ki

n,
20

02
]

[B
on

w
ic

k
an

d
M

oo
re

,2
00

8]

Z
eb

ra

[H
ar

tm
an

an
d

O
us

te
rh

ou
t,

19
92

]

H
ar

p

[L
is

ko
v

et
al

.,
19

91
]

B
R

K
yb

os
[W

on
g

et
al

.,
20

05
]

Fr
an

gi
pa

ni
[T

he
kk

at
h

et
al

.,
19

97
]

E
ch

o
[H

is
ge

n
et

al
.,

19
93

]

FA
B

[S
ai

to
et

al
.,

20
04

]
xF

S
[A

nd
er

so
n

et
al

.,
19

96
]

B
ST

s
[A

m
ir

ie
ta

l.,
20

00
]

Pe
ta

l[
L

ee
an

d
T

he
kk

at
h,

19
96

]
C

ep
h

[W
ei

le
ta

l.,
20

06
]

R
IB

D

Ta
bl

e
2.

1:
C

at
eg

or
iz

at
io

n
of

ex
is

tin
g

di
st

ri
bu

te
d

fil
e

sy
st

em
s

an
d

st
or

ag
e

sy
st

em
s

de
pe

nd
in

g
on

th
ei

r
re

pl
ic

a
co

ns
is

te
nc

y
an

d
m

et
ad

at
a

co
ns

is
te

nc
y

m
ec

ha
ni

sm
s.

N
ot

at
io

n:
(i

)
V

er
tic

al
C

at
eg

or
ie

s:
fil

e-
le

ve
lr

ep
lic

at
io

n
(F

R
),

bl
oc

k-
le

ve
l

re
pl

ic
at

io
n

(B
R

),
fil

e-
le

ve
l,

m
et

ad
at

a
on

ly
re

pl
ic

at
io

n
(F

R
-M

),

da
ta

an
d

m
et

ad
at

a
re

pl
ic

at
io

n
(F

R
-M

D
),

(i
i)

H
or

iz
on

ta
l

C
at

eg
or

ie
s:

C
on

si
st

en
cy

at
fil

e
le

ve
l

(F
C

),
or

bl
oc

k
le

ve
l

co
ns

is
te

nc
y

(B
C

).
M

ec
ha

ni
sm

s:

ro
ll-

fo
rw

ar
d

lo
gg

in
g

(R
F)

,o
r

ro
ll-

ba
ck

ve
rs

io
ni

ng
(R

B
),

le
ad

to
fo

ur
co

m
bi

na
tio

ns
:

FC
-R

F,
FC

-R
B

,B
C

-R
F,

B
C

-R
B

.

CHAPTER 2. RELATED WORK 35

Anderson et al., 1996; Weil et al., 2006]1.

Third, there have been fewer systems in the rest of the categories. This can be explained as follows:

File-level roll-back recovery (FC-RB column) can be implemented generally in two ways: either by

logging old values of metadata and data, e.g. in a journal, or by using in place versioning on the storage

devices. The first approach, is not practical as it requires updating data on the disk and thus, performing

seeks and storing the old values in the journal for roll back purposes and thus, incurring all I/Os in

the critical path. Instead, it makes more sense to just use roll forward, by only writing the new values

directly in the journal and applying them to the actual data later on, during a cleanup procedure, off the

critical path. Thus, roll back approaches make sense only for systems that have support for low-cost

versioning, such as ZFS [Bonwick and Moore, 2008]2.

Block level recovery on the other hand, requires maintaining state at the block level, which has been

difficult to provide in previous generation systems. Block level, roll forward recovery (BC-RF column)

has been examined in the Echo system [Hisgen et al., 1993]. Echo uses a transactional API at the block

level, implemented with a logging mechanism, to resolve inconsistencies both for replication purposes

as well as for system metadata. Dealing with these issues at the block level allows Echo to use a single

log for both purposes. The BST approach [Amiri et al., 2000] introduces base storage transactions

(BSTs) at the block level. By restricting their scope, it is possible to reduce the amount of state required

and to avoid maintaining a log.

Finally, the shaded classes do not seem to make sense for practical, real-life systems, whereas the

FC-RB/BR class is not populated, but it appears to be a valid design point. This would correspond e.g.,

to a versioning filesystem implemented appropriately on top of a block level such as Petal [Lee and

Thekkath, 1996], FAB [Saito et al., 2004], or Kybos [Wong et al., 2005].

Given these observations, there are two main questions to consider:

1. Does it make sense to deal with consistency issues at the file or block level?

2. Is roll forward or roll back recovery more appropriate?

In Chapter 6 we argue that dealing with consistency issues at the block level by using roll back

recovery is a promising approach for building storage systems.

1Ceph [Weil et al., 2006] is a filesystem based on object-based storage, nevertheless, relies on the object storage devices
for replication of data and guarantees metadata consistency at the file level.

2Although ZFS is not a cluster filesystem we mention it here because it provides an interesting design point.

CHAPTER 2. RELATED WORK 36

2.4.2 Related Work

Besides the taxonomy presented above, our work on RIBD, presented in Chapter 6, bears similarity with

various storage systems in three respects:

First, in providing a transactional API at the block level, Echo [Hisgen et al., 1993] provides arbitrary

transactions but uses roll forward recovery. BSTs [Amiri et al., 2000] allow the system to maintain

consistency at all block operations, without the need for recovery after failures. Instead our API uses

the notion of consistency intervals (CIs) that deal with atomicity, consistency, and durability, relying for

isolation to the use of explicit locks within CIs. CIs can include arbitrary block operations. To maintain

consistency, unlike Echo, we use roll back recovery based on versioning. Finally, unlike both Echo and

BSTs we evaluate the impact on scalability using a real prototype. CIs are similar to atomic recovery

units (ARUs) [Grimm et al., 1996]. However, ARUs do not deal with replica consistency, as they target

recovery in local storage systems.

Second, with systems that aim at low-overhead versioning. Such systems that use versioning at the

file level are ZFS [Bonwick and Moore, 2008], Elephant [Santry et al., 1999], 3DFS [Roome, 1992],

the Inversion filesystem [Olson, 1993], Plan9 [Pike et al., 1995], Spiralog [Johnson and Laing, 1996],

and self-securing storage [Strunk et al., 2000]. Also, Cedar [Hagmann, 1987] and Venti [Quinlan and

Dorward, 2002] use a similar concept of immutable files. Finally, Soules et al. [Soules et al., 2003]

examine issues related to metadata in versioning filesystems.

Systems that use versioning at the block level are Clotho (presented in Chapter 3) that is extended

in Chapter 6 to support distributed globally-consistent versions, Petal [Lee and Thekkath, 1996], WAFL

[Hitz et al., 1994], SnapMirror [Patterson et al., 2002], HP Olive [Aguilera et al., 2006] and Timeline

[Hue Moh and Liskov, 2004].

WAFL and SnapMirror are single-node versioning systems. Petal offers crash-consistent snapshots

using a copy-on-write mechanism but requires disruption of user access to stored data when capturing

or accessing versions. Olive builds upon the FAB [Saito et al., 2004] clustered storage system, adding

the ability to create writable storage branches incurring minimal overhead . However, Olive’s snapshots

are crash-consistent (rather than consistent at the higher level software level as in RIBD) and require

a recovery mechanism at the application level (e.g. fsck), combined with write support, in order to be

consistent. Finally, Timeline has a different scope supporting versioning for a persistent object store

distributed over the wide area.

CHAPTER 2. RELATED WORK 37

Third, our implementation of RIBD relies on Orchestra, an extensible storage system prototype

presented in Chapter 5. Other systems that have used similar approaches for extending the functionality

of the I/O stack are the Hurricane filesystem [Krieger and Stumm, 1997] and FiST [Zadok and Nieh,

2000]. Unlike Orchestra, that replaces the block level in the Linux kernel, these systems operate at the

file level.

Besides storage systems, there has been a lot of work on issues related to failures and recovery of

distributed systems. In particular, Sinfonia [Aguilera et al., 2007] provides mini-transactions among

groups of nodes and has been used to build a cluster filesystem, SinfoniaFS, for evaluation purposes.

Like Sinfonia, RIBD targets data centers, does not require interaction between file servers, and offers

configurable durability semantics. There are nonetheless significant differences. First, Sinfonia pro-

poses a relatively general-purpose transactional abstraction while our model is simpler and focuses on

storage systems. In addition, Sinfonia follows a roll-forward recovery model relying on logging while

our system implements a roll-backwards recovery scheme based on versioning. In addition SinfoniaFS

explores a different design space by supporting coherent, client-side caching, with a write-through read-

validation strategy. Our approach would also impose a write-through scheme for (optional) client-side

caching at the end of a transaction. However, the use of explicit locking would allow client caches to

avoid read validation.

The Federated Array of Bricks (FAB) [Saito et al., 2004] is also related to RIBD and is interesting in

the respect that it uses a voting protocol to deal with all types of failures in replica consistency. Unlike

CIs, FAB allows updates to replicas to complete when quorum is guaranteed. During reads, a voting

process takes place and decides the value of the block. This approach incurs fairly different tradeoffs

compared to our protocols (writes are faster and reads are slower). Supporting a voting mechanism

for replica consistency of non critical data in our system would only require modifications to a small

subset of modules. However, we choose to use a single, transactional mechanism for all purposes, as we

believe it is more appropriate for primary storage applications, as opposed to archival-type applications.

Finally, RIBD does not address Byzantine failures and silent data errors, which have been the topic

of systems such as PASIS [Goodson et al., 2003], as well as off-site disaster recovery [Patterson et al.,

2002].

Chapter 3

Clotho: Transparent Data Versioning at

the Block I/O Level

Those who cannot remember the past are condemned to repeat it.

—George Santayana (1863 - 1952), The Life of Reason

The content of this chapter roughly corresponds to publication [Flouris and Bilas, 2004].

3.1 Introduction

Storage is currently emerging as one of the major problems in building tomorrow’s computing infras-

tructure. Future systems will provide tremendous storage, CPU processing, and network transfer ca-

pacity in a cost-efficient manner and they will be able to process and store ever increasing amounts of

data. The cost of managing these large amounts of stored data becomes the dominant complexity and

cost factor for building, using, and operating modern storage systems. Recent studies [Gartner Group,

2000] show that storage expenditures represent more than 50% of the typical server purchase price for

applications such as OLTP (On-Line Transaction Processing) or ERP (Enterprise Resource Planning)

and these percentages will keep growing. Furthermore, the cost of storage administration is estimated

at several times the purchase price of the storage hardware [Anderson et al., 2002; Cox et al., 2002; Lee

and Thekkath, 1996; Gibson and Wilkes, 1996; Thekkath et al., 1997; Veitch et al., 2001; Wilkes, 2001].

Thus, building self-managed storage devices that reduce management-related overheads and complexity

is of paramount importance.

38

CHAPTER 3. CLOTHO: TRANSPARENT DATA VERSIONING AT THE BLOCK I/O LEVEL 39

One of the most cumbersome management tasks that requires human intervention is creating, main-

taining, and recovering previous versions of data for archival, durability, and other reasons. The problem

is exacerbated as the capacity and scale of storage systems increases. In large-scale storage systems,

proper backup is of paramount importance, however current solutions are expensive and arduous. Today,

backup is the main mechanism used to serve these needs. However, traditional backup systems are lim-

ited in the functionality they provide. Moreover they usually incur high access and restore overheads on

magnetic tapes, they impose a very coarse granularity in the allowable archival periods, usually at least

one day, and they result in significant management overheads [Cox et al., 2002; Quinlan and Dorward,

2002]. Automatic versioning, in conjunction with increasing disk capacities, has been proposed [Cox

et al., 2002; Quinlan and Dorward, 2002] as a method to address these issues. In particular, magnetic

disks are becoming cheaper and larger and it is projected that disk storage will soon be as competitive as

tape storage [Cox et al., 2002; Esener et al., 1999]. With the advent of inexpensive high-capacity disks,

we can perform continuous, real-time versioning and we can maintain online repositories of archived

data. Moreover, online storage versioning offers a new range of possibilities compared to simply recov-

ering users’ files that are available today only in expensive, high-end storage systems:

• Recovery from user mistakes. Online versioning allows frequent storage snapshots that reduce

the amount of data lost compared to traditional backup systems. The users themselves can recover

accidentally deleted or modified data by rolling-back to a saved version.

• Recovery from system corruption. In the event of a malicious incident on a system, administra-

tors can quickly identify corrupted data as well as recover to a previous, consistent system state

[Soules et al., 2003; Strunk et al., 2000].

• Historical analysis of data modifications. When it is necessary to understand how a piece of

data has reached a certain state, versioning proves a valuable tool.

Our goal in the work presented in this chapter is to provide online storage versioning capabilities

in commodity storage systems, in a transparent and cost-effective manner. Storage versioning has been

previously proposed and examined purely at the filesystem level [Pike et al., 1990; Santry et al., 1999]

or at the block level [Hitz et al., 1994; Sun Microsystems, 2008] but being filesystem aware. These

approaches to versioning were intended for large, centralized storage servers or appliances. We argue

that to build self-managed storage systems, versioning functionality should be pushed to lower system

layers, closer to the disk to offload higher system layers [Strunk et al., 2000]. This is made possible by

CHAPTER 3. CLOTHO: TRANSPARENT DATA VERSIONING AT THE BLOCK I/O LEVEL 40

underlying technologies that drive storage systems. Disk storage, network bandwidth, processor speed,

and main memory are reaching speeds and capacities that make it possible to build cost-effective storage

systems with significant processing capabilities [Esener et al., 1999; Gibson et al., 1998; Gray, 1999;

Patterson, 2000] that will be able to both store vast amounts of information [Gray, 1999; Lesk, 1997]

and to provide advanced functionality.

Our approach of providing online storage versioning is to provide all related functionality at the

block level. This approach has a number of advantages compared to other approaches that try to pro-

vide the same features either at the application or the filesystem level. First, it provides a higher level

of transparency and in particular is completely filesystem agnostic. For instance, we have used our

versioned volumes with multiple, third party, filesystems without the need for any modifications. Data

snapshots can be taken on demand and previous versions can be accessed online simultaneously with

the current version. Second, it reduces complexity in higher layers of storage systems, namely the

filesystem and storage management applications [Hutchinson et al., 1999]. Third, it takes advantage of

the increased processing capabilities and memory sizes of active storage nodes and offloads expensive

host-processing overheads to the disk subsystem, thus, increasing the scalability of a storage archival

system [Hutchinson et al., 1999].

However, block-level versioning poses certain challenges as well: (i) Memory and disk space over-

head: Because we only have access to blocks of information, depending on application data access

patterns, there is increased danger for higher space overhead in storing previous versions of data and the

related metadata. (ii) I/O path performance overhead: It is not clear at what cost versioning functionality

can be provided at the block-level. (iii) Consistency of the versioned data when the versioned volume

is used in conjunction with a filesystem. (iv) Versioning granularity: Since versioning occurs at a lower

system layer, information about the content of data is not available, as is, for instance, the case when

versioning is implemented in the filesystem or the application level. Thus, we only have access to full

volumes as opposed to individual files.

We design Clotho1, a system that provides versioning at the block-level and addresses all above is-

sues, demonstrating that this can be done at minimal space and performance overheads. First, Clotho has

low memory space overhead and uses a novel method to avoid copy-on-write costs when the versioning

extent size is larger than the block size. Furthermore, Clotho employs off-line differential compres-

1Clotho, one of the Fates in ancient Greek mythology, spins the thread of life for every mortal.

CHAPTER 3. CLOTHO: TRANSPARENT DATA VERSIONING AT THE BLOCK I/O LEVEL 41

sion (or diffing) to reduce disk space overhead for archived versions. Second, using advanced disk

management algorithms, Clotho’s operation is reduced in all cases to simply manipulating pointers

in in-memory data structures. Thus, Clotho’s common-path overhead follows the rapidly increasing

processor-memory curve and does not depend on the much lower disk speeds. Third, Clotho deals with

version consistency by providing mechanisms that can be used by higher system layers to guarantee

that either all data is consistent or to mark which data (files) are not. Finally, we believe that volumes

are an appropriate granularity for versioning policies. Given the amounts of information that will need

to be managed in the future, specifying volume-wide policies and placing files on volumes with the

appropriate properties, will result in more efficient data management.

We implement Clotho as an additional layer (driver) in the I/O hierarchy of Linux. Our imple-

mentation approach allows Clotho the flexibility to be inserted in many different points in the block

layer hierarchy in a single machine, a clustered I/O system, or a SAN. Clotho works over simple block

devices such as a standard disk driver or more advanced device drivers such as volume managers or

hardware/software RAIDs. Furthermore, our implementation provides to higher layers the abstraction

of a standard block device and thus, can be used by other disk drivers, volume/storage managers, object

stores or filesystems.

The main memory overhead of Clotho for metadata is about 500 KBytes per GByte of disk space

using 32-KByte extents (i.e. 500MB per TByte of disk). This is a significant amount of memory,

however, it can be reduced using larger extents (e.g. with 128-KByte extents Clotho needs 128MB per

TByte of disk). Further reduction of memory overhead can be achieved by swapping unused metadata

from memory to disk, as discussed in the next chapters.

We evaluate our implementation with both micro-benchmarks as well as real filesystems and the

SPEC SFS 3.0 suite over NFS. We find that the performance overhead of Clotho for I/O operations is

minimal, however, it may change the behavior of higher layers (including the filesystem), especially

if they make implicit assumptions about the placement of data blocks on the underlying block device.

Clotho uses remap-on-write with a logging policy, which optimizes write performance, but in the long

run may have adverse effects on the performance of reads. To avoid such behavior, co-design or tuning

of the two layers (file system and Clotho) may be necessary. Overall, we find that our approach is

promising in offloading significant management overhead and complexity from higher system layers to

the disk itself and is a concrete step towards building self-managed storage systems.

The rest of this chapter is organized as follows. Section 3.2 presents our design and discusses the

CHAPTER 3. CLOTHO: TRANSPARENT DATA VERSIONING AT THE BLOCK I/O LEVEL 42

related challenges in building block-level versioning systems. Section 3.3 presents our implementation.

Section 3.4 presents our experimental evaluation and results, while Section 3.5 presents limitations and

future work. Finally, Section 3.6 draws our conclusions.

3.2 System Design

The design of Clotho is driven by the following high-level goals and challenges:

• Flexibility and transparency.

• Low metadata footprint and low disk space overhead.

• Low-overhead common I/O path operation.

• Consistent online snapshots.

Next we discuss how we address each of these challenges separately.

3.2.1 Flexibility and Transparency

Clotho provides versioned volumes to higher system layers. These volumes look similar to ordinary

physical disks that can, however, be customized, based on user-defined policies to keep previous ver-

sions of the data they store. Essentially, Clotho provides a set of mechanisms that allow the user to

add time as a dimension in managing data by creating and manipulating volume versions. Every piece

of data passing through Clotho is indexed based not only on its location on the block device, but also

on the time the block was written. When a new version is created, a subsequent write to a block will

create a new block preserving the previous version. Multiple writes to the same data block between

versions result in overwriting the same block. Using Clotho, device versions can be captured either on

demand or automatically at specified intervals. The user can view and access all previous versions of

the data online, as independent block devices along with the current version. The user can compact

and/or delete previous volume versions. In this chapter we focus on the mechanisms Clotho provides

and we only present simple policies we have implemented and tested ourselves. We expect that systems

administrators will further define their own policies in the context of higher-level storage management

tools.

Clotho provides a set of primitives (mechanisms) that higher-level policies can use for automatic

version management:

CHAPTER 3. CLOTHO: TRANSPARENT DATA VERSIONING AT THE BLOCK I/O LEVEL 43

FS, Database, NFS, etc.

Disk DiskDisk Disk ...

Virtual Block Volume

DiskDisk

RAID Controller

Disk ...

FS, Database, NFS, etc.

Clotho (Versioning Layer)

Clotho (Versioning Layer)

Clotho (Versioning Layer)

FS, Database, NFS, etc.

Figure 3.1: Clotho in the block device hierarchy.

• CreateVersion() provides a mechanism for capturing the lower-level block device’s state into

a version. This operation can be triggered either explicitly by OS services or user applications or

optionally by Clotho based on internal events, such as on each write or every few writes.

• DeleteVersion() explicitly removes a previously archived version and reclaims the corre-

sponding volume space.

• ListVersions() shows all saved version of a specific block device.

• ViewVersion() enables creating a virtual device that corresponds to a specific version of the

volume and is accessible in read-only mode.

• CompactVersion() and UncompactVersion() provide the ability to compact and un-compact

existing versions for reducing disk space overhead.

Versions of a volume have the following properties: Each version is identified by a unique version

number, which is an integer counter starting from value 0 and increasing with each new version. Version

numbers are associated with timestamps for presentation purposes. All blocks of the device that are

accessible to higher layers during a period of time will be part of the version of the volume taken at

that moment (if any) and will be identified by the same version number. Each of the archived versions

exists solely in read-only state and will be presented to the higher levels of the block I/O hierarchy as

a distinct, virtual, read-only block device. The latest version of a device is both readable and writable,

exists through the entire lifetime of the Clotho’s operation, and cannot be deleted.

One of the main challenges in Clotho is to provide all versioning mechanisms at the block level

in a transparent and flexible manner. Clotho can be inserted arbitrarily in a system’s layered block I/O

CHAPTER 3. CLOTHO: TRANSPARENT DATA VERSIONING AT THE BLOCK I/O LEVEL 44

hierarchy. This stackable driver concept has been employed to design other block-level I/O abstractions,

such as software RAID systems or volume managers, in a clean and flexible manner [Sun Microsystems,

2008]. The input (higher) layer can be any filesystem or other block-level abstraction or application,

such as a RAID, volume manager, or another storage system. Clotho accepts block I/O requests (read,

write, ioctl) from this layer. Similarly, the output (lower) layer can be any other block device or block-

level abstraction. This design provides great flexibility in configuring a system’s block device hierarchy.

Figure 3.1 shows some possible configurations for Clotho. On the left part of Figure 3.1, Clotho operates

on top of a physical disk device. In the middle, Clotho acts as a wrapper of a single virtual volume

constructed by a volume manager, which abstracts multiple physical disks. In this configuration Clotho

captures versions of the whole virtual volume. On the right side of Figure 3.1, Clotho is layered on top

of a RAID controller which adds reliability to the system. The result is a storage volume that is both

versioned and can tolerate disk failures.

Most higher level abstractions that are built on top of existing block devices (e.g. filesystems) as-

sume a device of fixed size, with few rare exceptions such as resizable filesystems. However, the space

occupied by previous versions of data in Clotho changes dynamically, depending on the volume of

modified data and the frequency of data versioning. Clotho can provide both a fixed size block device

abstraction to higher layers, as well as dynamically resizable devices, if the higher layers support it.

At device initialization time Clotho reserves a configurable percentage of the available device space for

keeping previous versions of the data. This essentially partitions (logically not physically) the capacity

of the wrapped device into two logical segments as illustrated in Figure 3.2. The Primary Data Segment

(PDS), which contains the data of the current (latest) version and the Backup Data Segment (BDS),

which contains all the data of the archived versions. When BDS becomes full, Clotho simply returns an

appropriate error code and the user has to reclaim parts of the BDS by deleting or compacting previous

versions, or by moving them to some other device. These operations can also be performed automati-

cally by a module that implements high-level data management policies. The latest version of the block

device continues to be available and usable at all times. Clotho enforces this capacity segmentation by

reporting as its total size to the input layer, only the size of the PDS. The space reserved for storing

versions is hidden from the input layer and is accessed and managed only through the API provided by

Clotho.

Finally, Clotho’s metadata needs to be saved on the output device along with the actual data. Losing

indexing metadata would render the data stored throughout the block I/O hierarchy unusable. Currently

CHAPTER 3. CLOTHO: TRANSPARENT DATA VERSIONING AT THE BLOCK I/O LEVEL 45

Clotho lazily flushes metadata to the output device periodically in order to keep them consistent. Using

this scheme, Clotho is able to recover after a crash to the latest saved volume version (i.e. roll-back)

doing a full scan over the metadata which are stored sequentially on the disk. It is not, however, able to

recover to the latest version of the data volume. Block-level metadata management and consistency in

the case of crashes are important problems and hard to address without performance overheads. While

Clotho does not currently implement sophisticated metadata consistency mechanisms in order to recover

the latest data version, such issues and solutions are discussed in more detail in Section 4.2.3. The size

of the metadata depends on the size of the encapsulated device and the extent size. In general, Clotho’s

metadata are much less than the metadata of a typical filesystem and they are stored sequentially on the

disk. Thus, lazily synchronizing them to stable storage, or reading them to recover does not introduce

large overheads.

3.2.2 Reducing Metadata Footprint

The three main types of metadata in Clotho are the Logical Extent Table (LXT), the Device Version List

(DVL), and the Device Superblock (DSB).

The Logical Extent Table (LXT) is a structure used for logical to physical block translation. Clotho

presents to the input layer logical block numbers as opposed to the physical block numbers provided

by the wrapped device. Note that these block numbers need not directly correspond to actual phys-

ical locations, if another block I/O abstraction, such as a volume manager (e.g. LVM [Teigland and

Mauelshagen, 2001]) is used as the output layer. Clotho uses the LXT to translate logical block num-

bers to physical block numbers.

The Device Version List (DVL) is a list of all versions of the output device that are available to

higher layers as separate block devices. For every existing version, it stores its version number, the

virtual device it may be linked to, the version creation timestamp, and a number of flags.

The Device Superblock (DSB) is a small table containing important attributes of the output versioned

device. It stores information about the capacity of the input and output device, the space partitioning,

the size of the extents, the sector and block size, the current version counter, the number of existing

versions and other usage counters.

The LXT is the most demanding type of metadata and is conceptually an array indexed by block

numbers. The basic block size for most block devices varies between 512 Bytes (the size of a disk

sector) and 8 KBytes. This results in large memory requirements. For instance, for 1 TByte of disk

CHAPTER 3. CLOTHO: TRANSPARENT DATA VERSIONING AT THE BLOCK I/O LEVEL 46

����������������
����������������
����������������
����������������

Output Layer Capacity

����
����
����
����

Input Layer Capacity

M
et

ad
at

a Data Segment
Segment

Backup
Data

Primary

Figure 3.2: Logical space segments in Clotho.

storage with 4-KByte blocks, the LXT has 256M entries. In the current version of Clotho, every LXT

entry is 128-bits (16 bytes). These include 32 bits for block addressing and 32 bits for versions that

allow for a practically unlimited number of versions. Thus, such an LXT requires about 4 GBytes per

TByte of disk storage. Note that a 32-bit address space, with 4 KByte blocks, can address 16 TBytes of

storage.

To reduce the footprint of the LXT and at the same time increase the addressing range of LXT, we

use extents as opposed to device blocks as our basic data unit. An extent is a set of consecutive (logical

and physical) blocks. Extents can be thought of as Clotho’s internal blocks, which one can configure

to arbitrary sizes, up to several hundred KBytes or a few MBytes. Similarly to physical and logical

blocks, we denote extents as logical (input) extents or physical (output) extents. We have implemented

and tested extent sizes ranging from 1 KByte to 64 KBytes. With 32-KByte extents and subextent

addressing, we need only 500 MBytes of memory per TByte of storage. Moreover with a 32-KByte

extent size we can address 128 TBytes of storage.

However, using large extent sizes may result in significant performance overhead. When the extent

size and the operating system block size for Clotho block devices are the same (e.g. 4KBytes), Clotho

receives from the operating system the full extent for which it has to create a full version. When using

extents larger than this maximum size, Clotho sees only a subset of the extent for which it needs to

create a new version. Thus, it needs to copy the rest of the extent in the new version, even though only a

small portion of it is written by the higher system layers. This copy-on-write operation can significantly

decrease performance in the common I/O path, especially for large extent sizes. However, large extents

are desirable for reducing metadata footprint. Given that operating systems support I/O blocks of up to

a maximum size (e.g. 4K in Linux), this may result in severe performance overheads.

To address this problem we use subextent addressing, which enables remap-on-write operation on

CHAPTER 3. CLOTHO: TRANSPARENT DATA VERSIONING AT THE BLOCK I/O LEVEL 47

0 1 0 0

4−KByte extent

0 0 01

32−KByte extent with
4−KByte subextents

Valid subextent
bitmap

Device Block Size (input and output): 4 Kbytes

Figure 3.3: Subextent addressing in large extents.

every write. Remap-on-write does not copy the old data to a new extent, but allocates a new, free extent

for the data and translates the logical extent there. To solve the problem of partial updates we use small

bitmap in each LXT entry, marking with one bit the valid subextents, that is the ones containing valid

data. The invalid subextents are considered to contain garbage.

Remap-on-write, enabled by subextent addressing, has much lower overhead than copy-on-write

in write operations since it avoids data copying. However, subextent addressing has a significant im-

plication: it changes the way read operations proceed. During a read, we need to search for the valid

subextents in the LXT, both in the current but also in older extents, before translating the read operation

to physical extents. Depending on the size of the read request this may lead to more than one reads to the

disk. According to our experience and testing with real workloads and file systems this occurs rarely.

However, if this is not acceptable for an application, Clotho can also operate using a copy-on-write

algorithm which may exhibit better behavior in read-intensive workloads.

Another possible approach to reduce memory footprint is to store only part of the metadata in main

memory and perform swapping of active metadata from stable storage. This solution is orthogonal to

subextent addressing and can be combined with it. Active metadata swapping is necessary for large-

scale storage systems where storage capacity is so large, that even with subextent addressing its footprint

exceeds available memory. Support for such functionality in Clotho is left for future work.

3.2.3 Version Management Overhead

All version management operations can be performed at a negligible cost by manipulating in-memory

data structures. Creating a new version in Clotho involves simply incrementing the current version

counter and does not involve copying any data. When CreateVersion() is called, Clotho stalls all

incoming I/O requests for the time required to flush all its outstanding writes to the output layer. When

everything is synchronized on stable storage, Clotho increases the current version counter, appends a

new entry to the device version list, and creates a new virtual block device that can be used to access

CHAPTER 3. CLOTHO: TRANSPARENT DATA VERSIONING AT THE BLOCK I/O LEVEL 48

the captured version of the output device, as explained later. Since each version is linked to exactly one

virtual device, the (OS-specific) device number that sends the I/O request can be used to retrieve the I/O

request’s version.

The fact that device versioning is a low-overhead operation makes it possible to create flexible

versioning policies. Versions can be created by external processes periodically or based on system

events. For instance, the user processes can specify that it requires a new version every 1 hour, or

whenever all files to the device are closed or on every single write to the device. Some of the mechanisms

to detect such events, e.g. if there are any open files on a device, may be (and currently are) implemented

in Clotho but could also be provided by other system components.

In order to free backup disk space, Clotho provides a mechanism to delete volume versions. On a

DeleteVersion() operation, Clotho first locates the stored volume version that immediately follows

(time-wise) the delete candidate. Let us assume that the delete candidate is version numbered v, while

the “next-in-time” version is v′. Clotho then traverses the primary LXT segment and follows the list of

older versions for every extent. For every list entry that has a version number equal to v (i.e. the delete

candidate), it checks whether there is also a list entry with the v′ version number. If not, it changes the

version number of the v entry to v′, because version v′ needs this extent and it cannot be deleted. If

yes, it deletes the extent with version number v from the version list, marks the LXT entry as free, and

frees the related physical extents. As with version creation, all above operations for version deletion are

performed in-memory and may overlap with regular I/O.

DeleteVersion() is provided to the higher layers in order to implement version cleaning policies.

Since storage space is finite, such policies are necessary in order to continue versioning without running

out of backup storage. The DeleteVersion() operation is also necessary to proceed writing when

both the primary (PDS) and backup data segments (BDS) are full. In this case, Clotho automatically

deletes the oldest existing volume version, in order for to continue writing to the latest version of data.

3.2.4 Common I/O Path Overhead

We consider the common path for Clotho, as the I/O path to read and write to the latest (current) version

of the output block device, while versioning occurs frequently. Accesses to older versions are of less

importance since they are not expected to occur as frequently as current version usage. Accordingly,

we divide read and write access to volume versions in two categories, accesses to the current version

and accesses to any previous version. The main technique to reduce common path overhead is to divide

CHAPTER 3. CLOTHO: TRANSPARENT DATA VERSIONING AT THE BLOCK I/O LEVEL 49

the LXT in two logical segments, corresponding to the primary and backup data segments of the output

device as illustrated in Figure 3.2. The primary segment of the LXT (mentioned as PLX in figures)

has an equal number of logical extents as the input layer to allow a direct, 1-1 mapping between the

logical extents and the physical extents of the current version on the output device. By using a direct,

1-1 mapping, Clotho can locate a physical extent of the current version of a data block with a single

lookup in the primary LXT segment, when translating I/O requests to the current version of the versioned

device. If the input device needs to access previous versions of a versioned output device, then multiple

accesses to the LXT maybe required to locate the appropriate version of the requested extent.

To find the physical extent that holds the specific version of the requested block, Clotho first ref-

erences the primary LXT segment entry to locate the current version of the requested extent (a single

table access). Then it uses the linked list that represents the version history of the extent to locate the

appropriate version of the requested block. Depending on the type of each I/O request and the state of

the requested block, I/O requests can be categorized as follows:

Write requests can only be performed on the current version of a device, since older versions are read-

only. Thus, Clotho can locate the LXT entry of a current version extent with a single LXT access. Write

requests can be one of three kinds as shown in Figure 3.4:

a. Writes to new, unallocated blocks. In this case, Clotho calls its extent allocator module, which

returns an available physical extent of the output device, it updates the corresponding entry in the

LXT, and forwards the write operation to the output device. The default extent allocation policy

in our current implementation is a scan-type (or logging) policy, starting from the beginning of the

PDS to its end. Free extents are ignored until we reach the end of the device, when we rewind the

allocation pointer and start allocating the free extents. We have also implemented other allocation

policies, such as first free block and logging with immediate reuse on free.

b. Writes to existing blocks that have been modified after the last snapshot was captured (i.e. their

version number is equal to the current version number). In this case Clotho locates the corre-

sponding entry in the primary LXT segment with a single lookup and translates the request’s

block address to the existing physical block number of the output device. Note that in this case

the blocks are updated in place.

c. Writes to existing blocks that have not been modified since the last snapshot was captured (i.e.

their version number is lower than the current version number). The data in the existing physical

CHAPTER 3. CLOTHO: TRANSPARENT DATA VERSIONING AT THE BLOCK I/O LEVEL 50

Keep
Old PX

Allocate
New PX
& Write

�����
�����
�����
�����

�����������������
�����������������
�����������������
�����������������

type (a) type (b)

Output
Physical
Extents

Extents

Input
Logical

Allocate
New PX

Overwrite

type (c)

& Link

& Write

WriteWriteWrite

Old PX

LXT

Old LX
Move

MappingDirect

Arbitrary Mapping

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

Figure 3.4: Translation path for write requests.

extent must not be overwritten, but instead the new data should be written in a different location

and a new version of the extent must be created. Clotho allocates a new LXT entry in the backup

segment and swaps the old and new LXT entries so that the old one is moved to the backup LXT

segment. The block address is then translated to the new physical extent address, and the request

is forwarded to the output layer. This “swapping” of LXT entries maintains the 1-1 mapping of

current version logical extents in the LXT which optimizes common-path references to a single

LXT lookup.

This write translation algorithm allows for independent, fine grain versioning at the extent level.

Every extent in the LXT is versioned according to its updates from the input level. Extents that are

updated more often have more versions than extents written less frequently.

Read request translation is illustrated in Figure 3.5. First Clotho determines the desired version of

the device by the virtual device name and number in the request (e.g. /dev/clt1-01 corresponds to version

1 and /dev/clt1-02 to version 2). Then, Clotho traverses the version list on the LXT for the specific valid

extent and subextent and locates the appropriate physical block. Note that, as mentioned in Section 3.2.2,

due to remap-on-write and subextent addressing, it may be necessary to search for the valid subextents

in the LXT, both in the current but also in older extents, before translating the read operation to physical

extents. Depending on the size of the read request and the placement of valid subextents in the versioned

extents, an application read may lead to more than one read operations to the disk. According to our

CHAPTER 3. CLOTHO: TRANSPARENT DATA VERSIONING AT THE BLOCK I/O LEVEL 51

LXsBackup
�
�
�
�

�
�
�
�

����
����
����
����

�
�
�
�

�
�
�
�

����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������

Read request

Mapping

Direct

Read Physical
Extents (PXs)

Output
Physical
Extents

Extents

Input
Logical

LXT

Lookup

(Latest Version)
Read request

(Older Version)

Mapping
Arbitrary

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

Figure 3.5: Translation path for read requests.

experiments, however, this occurs infrequently and we found that remap-on-write is a better choice that

copy-on-write in the workloads we have measured.

Finally, previous versions of a Clotho device appear as different virtual block devices. Higher layers,

e.g. filesystems, can use these devices to access old versions of the data. If the device ID of a read request

is different from the normal input layer’s device ID, the read request refers to an extent belonging to

a previous version. Clotho determines from the device ID the version of the extent requested. Then,

it traverses the version list associated with this extent to locate the backup LXT entry that holds the

appropriate version of the logical extent. This translation process is illustrated in Figure 3.5.

3.2.5 Reducing Disk Space Requirements

Since Clotho operates at the block level, there is an induced overhead in the amount of space it needs

to store data updates. For instance, if an application using a file modifies a few consecutive bytes in the

file, Clotho will create a new version for the full extent that contains the modified data. To reduce the

space overhead in Clotho we provide a differential, content-based compaction mechanism, which we

describe next.

Clotho provides the user with the ability to compact device versions and still be able to transpar-

ently access them online. The policy decision on when to compact a version is left to higher-layers in

the system, similarly to all policy decisions in Clotho. We use a form of binary differential compression

[Ajtai et al., 2002] to only store the data that has been modified since the last version capture. When

CHAPTER 3. CLOTHO: TRANSPARENT DATA VERSIONING AT THE BLOCK I/O LEVEL 52

Backup LXs

�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������

��������������
��������������
��������������
��������������

Direct
Mapping

Reading
Compact LX

Ancestor PX Compact PX
(stores multiple LXs)

Diff LX

Lookup

Output
Physical
Extents

Extents

Input
Logical

LXT

Arbitrary
Mapping

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��
��

��
��
��
��
��

�
�
�
�

Figure 3.6: Read translation for compact versions.

CompactVersion() is called, Clotho constructs a differential encoding (or delta) between the extents

that belong to a given version with corresponding extents in its previous version [Ajtai et al., 2002].

Although a lot of differential policies can be applied in this case, such as to compare the content of a

specific version with its next version, or both the previous and the next version, at this stage we only

explore diffing with the previous version. Furthermore, although versions can also be compressed inde-

pendently of differential compression using algorithms such as Lempel-Ziv encoding [Ziv and Lempel,

1977] or Wheeler-Burrows encoding [Burrows and Wheeler, 1994], this is beyond the scope of our

work. We envision that such functionality can be provided by other layers in the I/O device stack.

The differential encoding algorithm works as follows. When a compaction operation is triggered,

the algorithm runs through the backup data segment of the LXT and locates the extents that belong to

the version under consideration. If an extent does not have a previous version, it is not compacted. For

each of the extents to be compacted the algorithm locates its previous version, diffs the two extents,

and writes the diffs to a physical extent on the output device. If the diff size is greater than a threshold

and diffing is not very effective, then Clotho discards this pair and proceeds with the next extent of the

version to be compacted. In other words, Clotho’s differential compression algorithm works selectively

on the physical extents, compacting only the extents that can be reduced in size. The rest are left in their

normal format to avoid performance penalties necessary for their reconstruction.

Since the compacted form of an extent requires less size than a whole physical extent, the algorithm

stores multiple deltas in the same physical extent, effectively imposing a different structure on the output

block device. Furthermore, for compacted versions, multiple entries in the LXT may point to the same

physical extent. The related entries in the LXT and the ancestor extent are kept in Clotho’s metadata.

CHAPTER 3. CLOTHO: TRANSPARENT DATA VERSIONING AT THE BLOCK I/O LEVEL 53

Physical extents that are freed after compaction are reused for storage. Figure 3.6 shows sample LXT

mappings for a compacted version of the output layer.

Data on a compacted version can be accessed transparently online as data on non-compacted vol-

umes (Figure 3.6). Clotho follows the same path to locate the appropriate version of the logical extent

in the LXT. To recreate the original, full extent data we need the differential data of the previous version

of the logical extent. With this information Clotho can reconstruct the requested block and return it to

the input driver. We evaluate the related overheads in Section 3.4.

Clotho supports recursive compaction of devices. The next version of a compacted version can still

be compacted. Also, compacted versions can be un-compacted to their original state with the reverse

process. A side-effect of the differential encoding concept is that it creates dependencies between two

consecutive versions of a logical extent, which affects the way versions are accessed, as explained next.

When deleting versions, Clotho checks for dependencies of compacted versions on a previous ver-

sion and does not delete extents that are required for un-diffing, even if their versions are deleted. These

logical extents are marked as "shadow" and are attached to the compacted version. It is left to higher-

level policies to decide if keeping such blocks increases the space overhead and it would be better to

un-compact the related version and delete any shadow logical extents.

3.2.6 Consistency

One of the main issues in block device versioning at arbitrary times is consistency of the stored data.

There are three levels of consistency for online versioning:

System state consistency: This refers to consistency of system buffers and data structures that are

used in the I/O path. To deal with this, Clotho flushes all device buffers in the kernel as well as filesys-

tem metadata before creating a volume version. Additionally, modern filesystems, such as XFS, provide

user-level support for filesystem “freezing”, where data and metadata flushing occurs while the filesys-

tem is “frozen”. This guarantees that the data and metadata on the block device correspond to a valid

snapshot of the filesystem at a point-in-time. That is, there are no consistency issues in internal system

data structures. Regarding Clotho’s metadata, they are also synchronized to disk at version creation.

This allows safe rollback to a previous version in the case of a crash, as discussed in Section 3.2.1.

Open file consistency: When a filesystem is used on top of a versioned device, certain files may

be open at the time of a snapshot. Since Clotho is designed as a transparent block device, it cannot

deal with this issue because of the block-level API limitations. However, in our Linux implementation

CHAPTER 3. CLOTHO: TRANSPARENT DATA VERSIONING AT THE BLOCK I/O LEVEL 54

we have access to higher layers and we provide a mechanism to assist users. When a new version is

created, Clotho’s user-level module queries the system for open files on the particular device. If such

files are open, Clotho creates a special directory with links to all open files and includes the directory in

the archived version. Thus, when accessing older versions the user can find out which files were open

at versioning time.

Application consistency: Applications using the versioned volume may have a specialized notion of

consistency. For instance, an application may be using two files that are both updated atomically. If a

version is created after the first file is updated and closed but before the second one is open and updated,

then, although no files were open during version creation, the application data may still be inconsistent.

This type of consistency is not possible to deal with transparently without application knowledge or

support, and thus, is not addressed by Clotho.

3.3 System Implementation

We have implemented Clotho as a block device driver module in the Linux 2.4 kernel and a user-level

control utility, in about 6,000 lines of C code. The kernel module can be loaded at runtime and config-

ured for any output layer device by means of an ioctl() command triggered by the user-level agent.

After configuring the output layer device, the user can manipulate the Clotho block device depending

on the higher layer that they want to use. For instance, the user can build a filesystem on top of a Clotho

device with mkfs or newfs and then mount it as a regular filesystem.

Our module adheres to the framework of block I/O devices in the Linux kernel and provides two

interfaces to user programs: an ioctl command interface and a /proc interface for device information

and statistics. All operations described in the design section to create, delete, and manage versions have

been implemented through the ioctl interface and are initiated by the user-level agent. The /proc

interface provides information about each device version through readable ASCII files. Clotho also uses

this interface to report a number of statistics, including the times of creation, a version’s time span, the

size of modified data from the previous version and some specific information to compacted versions,

such as the compaction level and the number of shadow extents.

The Clotho module uses the zero-copy mechanism of the make request fn() fashion that is used

by LVM [Teigland and Mauelshagen, 2001]. With this mechanism Clotho is able to translate the device

driver ID (kdev t) and the sector address of a block request (struct buffer head) and redirect it

CHAPTER 3. CLOTHO: TRANSPARENT DATA VERSIONING AT THE BLOCK I/O LEVEL 55

to other devices with minimal overhead. To achieve persistence of metadata, Clotho uses a kernel thread

created at module load time, which flushes the metadata to the output layer at configurable (currently

30 second) intervals.

The virtual device creation uses the partitionable block device concepts in the Linux kernel. A limit

in the Linux kernel minor numbering is that there can be at most 255 minor numbers for a specific

device and thus, only 255 versions can be seen simultaneously as partitions of Clotho. However, the

number of partitions supported by Clotho can be much larger. To overcome this limitation we have

created a mechanism through an ioctl call that allows the user to link and unlink on demand any of

the available versions to any of the 255 minor number partitions of a Clotho device. As mentioned,

each of these partitions is read-only and can be used as a normal block device, e.g. can be mounted to a

mount-point.

3.4 Experimental Results

Our experimental environment consists of two identical PCs running Linux. Each system has two Pen-

tium III 866 MHz CPUs, 768 MBytes of RAM, an IBM-DTLA-307045 ATA Hard Disk Drive with a

capacity of 46116 MBytes (2-MByte cache), and a 100MBps Ethernet NIC. The operating system is

Red Hat Linux 7.1, with the 2.4.18 SMP kernel. All experiments are performed on a 21-GByte partition

of the IBM disk. With a 32-KByte extent, we need only 10.5 MBytes of memory for our 21-GByte

partition.

We evaluate Clotho with respect to two parameters: memory and performance overhead. We use

two extent sizes, 4 and 32 KBytes. Smaller extent sizes have higher memory requirements. For our

21-GByte partition, Clotho with 4-KByte extent size uses 82 MBytes of in-memory metadata, the dirty

parts of which are flushed to disk every 30 seconds. We evaluate Clotho using both micro-benchmarks

(Bonnie++ version 1.02 [Coker] and an in-house developed micro-benchmark) and real-life setups with

production-level filesystems. The Bonnie++ benchmark is a publicly available filesystem I/O bench-

mark [Coker]. For the real-life setup we run the SPEC SFS V3.0 suite on top of two well-known Linux

filesystems, Ext2FS, and the high-performance journaling ReiserFS [ReiserFS]. In our results we use

the label Disk to denote experiments with the regular disk, without the Clotho driver on top.

CHAPTER 3. CLOTHO: TRANSPARENT DATA VERSIONING AT THE BLOCK I/O LEVEL 56

2000

2500

3000

3500

4000

4500

5000

5500

6000

1 2 4 8 16 32 64

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
ec

)

Block Size (KBytes)

Bonnie++ I/O Performance - Write, Rewrite & Read

Disk Write
Clotho Write
Clotho Read

Disk Read
Disk Rewrite

Clotho Rewrite

Figure 3.7: Bonnie++ throughput for write, rewrite, and read operations.

60
70
80
90

100
110
120
130
140
150
160
170

1 2 4 8 16 32 64

Se
ek

s/
se

c

Block Size (KBytes)

Bonnie++ I/O Performance - Seek

Disk
Clotho

Figure 3.8: Bonnie++ “seek and read” performance.

CHAPTER 3. CLOTHO: TRANSPARENT DATA VERSIONING AT THE BLOCK I/O LEVEL 57

3.4.1 Bonnie++

We use the Bonnie++ micro-benchmark to quantify the basic overhead of Clotho. The filesystem we

use in all Bonnie++ experiments is the Ext2FS with a 4-KByte extent size. The size of the file to be

tested is 2 GBytes with block sizes ranging from 1 KByte to 64 KBytes. We measure accesses to the

latest version of a volume with the following operations:

• Block Write: A large file is created using the write() system call.

• Block Rewrite: Each block of the file is read with read(), dirtied, and rewritten with write(),

requiring an lseek().

• Block Read: The file is read using a read() for every block.

• Random Seek: Processes running in parallel are performing lseek() to random locations in the

file and read()ing the corresponding file blocks.

Figure 3.7 shows that the overhead in write throughput is minimal and the two curves are practically

the same. In the read throughput case, Clotho performs slightly better than the regular disk. This is due

to the logging disk allocation policy that Clotho uses on writes, which however may have a negative

effect on reads because it alters the data placement of the file system. In the rewrite case, the overhead

of Clotho becomes more significant. This is due to the random “seek and read” operation overhead, as

shown in Figure 3.8. Since the seeks in this experiment are random, Clotho’s logging allocation has no

effect and the overhead of translating I/O requests and flushing filesystem metadata to disk dominates.

Even in this case, however, the overhead observed is at most 7.5% of the regular disk.

3.4.2 SPEC SFS

We use the SPEC SFS 3.0 benchmark suite to measure NFS file server throughput and response time

over Clotho. We use one NFS client and one NFS server. The two systems that serve as client and

server are connected with a switched 100 MBit/s Ethernet network. We use the following settings: NFS

version 3 protocol over UDP/IP, one NFS exported directory, biod max read=2, biod max write=2,

and requested loads ranging from 300 to 1000 NFS V3 operations/s with a 100 increment step. Both

warm-up and run time are 300 seconds for each run and the time for all the SPEC SFS runs in sequence

is approximately 3 hours. As mentioned above, we report results for the Ext2FS and ReiserFS (with

-notail option) filesystems [ReiserFS]. A new filesystem is created before every experiment.

CHAPTER 3. CLOTHO: TRANSPARENT DATA VERSIONING AT THE BLOCK I/O LEVEL 58

1

1.5

2

2.5

3

3.5

4

300 400 500 600 700 800 900 1000

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(M
se

c/
op

er
at

io
n)

Requested Load (NFS V3 operations/second)

SPEC SFS 3.0 - Response Time vs. Load (4KB Extents)

Clotho Reiser No Ver.
Disk Ext2 FS

Disk Reiser FS
Clotho Reiser 10min Ver.
Clotho Reiser 5min Ver.

Clotho Ext2 No Ver.
Clotho Ext2 10min Ver.

Clotho Ext2 5min Ver.

Figure 3.9: SPEC SFS response time using 4-KByte extents.

300

400

500

600

700

800

900

200 300 400 500 600 700 800 900 1000

M
ea

su
re

d
T

hr
ou

gh
pu

t (
O

pe
ra

tio
ns

/S
ec

)

Requested Load (NFS V3 operations/second)

SPEC SFS 3.0 - Req. Load vs. Measured Load (4KB Extents)

Clotho Ext2 5min Ver.
Clotho Ext2 10min Ver.

Clotho Ext2 No Ver.
Clotho Reiser 5min Ver.
Clotho RFS 10min Ver.

Disk Reiser FS
Disk Ext2 FS

Clotho Reiser No Ver.

Figure 3.10: SPEC SFS throughput using 4-KByte extents.

CHAPTER 3. CLOTHO: TRANSPARENT DATA VERSIONING AT THE BLOCK I/O LEVEL 59

1

1.5

2

2.5

3

3.5

4

300 400 500 600 700 800 900 1000

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(M
se

c/
op

er
at

io
n)

Requested Load (NFS V3 operations/second)

SPEC SFS 3.0 - Response Time vs. Load (32KB /w sub-extents)

Clotho RFS No Ver.
Disk Ext2 FS

Disk Reiser FS
Clotho RFS 10min Ver.
Clotho RFS 5min Ver.

Clotho Ext2 No Ver.
Clotho Ext2 10min Ver.
Clotho Ext2 5min Ver.

Figure 3.11: SPEC SFS response time using 32 KByte extents with subextents (RFS denotes ReiserFS).

300

400

500

600

700

800

900

200 300 400 500 600 700 800 900 1000

M
ea

su
re

d
T

hr
ou

gh
pu

t (
O

pe
ra

tio
ns

/S
ec

)

Requested Load (NFS V3 operations/second)

SPEC SFS 3.0 - Req. Load vs. Meas. Load (32KB /w sub-extents)

Clotho Ext2 5min Ver.
Clotho Ext2 10min Ver.

Clotho Ext2 No Ver.
Clotho RFS 5min Ver.

Clotho RFS 10min Ver.
Disk Reiser FS

Disk Ext2 FS
Clotho RFS No Ver.

Figure 3.12: SPEC SFS throughput using 32-KByte extents with subextents (RFS denotes ReiserFS).

CHAPTER 3. CLOTHO: TRANSPARENT DATA VERSIONING AT THE BLOCK I/O LEVEL 60

We conduct four experiments with SPEC SFS for each of the two filesystems: Using the plain

disk, using Clotho over the disk without versioning, using Clotho and versioning every 5 minutes, and

using Clotho with 10 minute versioning. Versioning is performed throughout the entire 3 hour run of

SPEC SFS. Figures 3.9 and 3.10 show our throughput and latency results for 4-KByte extents, while

Figures 3.11 and 3.12 show the results using 32-KByte extents with subextent addressing.

Our results show that Clotho outperforms the regular disk in all cases except ReiserFS without ver-

sioning. The higher performance is due to the logging (sequential) block allocation policy that Clotho

uses. This explanation is reinforced by the performance in the cases where versions are created peri-

odically. In this case, frequent versioning prevents disk seeks caused by overwriting of old data, which

are now written to new locations on the disk in a sequential fashion. Furthermore, we observe that the

more frequent the versioning, the higher the performance. The 32-KByte extent size experiments (Fig-

ures 3.11 and 3.12) show that even with much lower memory requirements, subextent mapping offers

almost the same performance as the 4-KByte case. We attribute this small difference to the disk rota-

tional latency, when skipping unused space to write subextents, while in the 4-KByte extent size, the

extents are written “back-to-back” in a sequential manner.

Finally, comparing the two filesystems, Ext2 and ReiserFS, we find that the latter performs worse on

top of Clotho. We attribute this behavior to Clotho’s altered data layout that affects reads for sequential

files. ReiserFS tries to optimize data placement for reads, however Clotho’s logging policy underneath,

places data depending on the sequence of write requests and not on the logical data address. This incurs

more disk seeks for reading files that ReiserFS has placed sequentially and thus performance in the

SPEC SFS workload is lower, compared to Ext2.

3.4.3 Compact version performance

Finally, we measure the read throughput of compacted versions to evaluate the space-time trade-off of

diff-based compaction. Since old versions are only accessible in read-only mode, we developed a two-

phase micro-benchmark that performs only read operations. In the first stage, our micro-benchmark

writes a number of large files and captures multiple versions of the data through Clotho. In writing

the data the benchmark is also able to control the amount of similarity between two versions, and thus,

the percentage of space required by compacted versions. In the second stage, our benchmark mounts

a compacted version and performs 2000 random read operations on the files of the compacted version.

Before every run, the benchmark flushes the system’s buffer cache.

CHAPTER 3. CLOTHO: TRANSPARENT DATA VERSIONING AT THE BLOCK I/O LEVEL 61

0

512

1024

2048

3072

1 2 4 8 16 32 64

R
ea

d
T

hr
ou

gh
pu

t (
K

B
yt

es
/s

ec
)

Read Buffer Size (KBytes)

Packed vs. Unpacked Snapshots -- Random Read Throughput

100% Packed Snapshot
75% Packed Snapshot
50% Packed Snapshot
25% Packed Snapshot
0% Packed Snapshot

Figure 3.13: Random “compact-read” throughput.

5

10

15

20

25

30

1 2 4 8 16 32 64A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(M
se

c/
op

er
at

io
n)

Read Buffer Size (KBytes)

Packed vs. Unpacked Snapshots -- Random Read Latency

100% Packed Snapshot
75% Packed Snapshot
50% Packed Snapshot
25% Packed Snapshot
0% Packed Snapshot

Figure 3.14: Random “compact-read” latency.

CHAPTER 3. CLOTHO: TRANSPARENT DATA VERSIONING AT THE BLOCK I/O LEVEL 62

Figures 3.13 and 3.14 present latency and throughput results for different percentages of compaction.

For 100% compaction, we save the maximum space on the disk, whereas in the case of 0% compaction

we do not save any space at all. The difference in performance is mainly due to the higher number of

disk accesses per read operation required for compacted versions. Each such read operation requires

two disk reads to reconstruct the requested block. One read to fetch the block of the previous version

and one to fetch the diffs. In particular, with 100% compaction, each and every read results in two disk

accesses and thus, performance is about half of the 0% compaction case.

3.5 Limitations and Future work

The main limitation of Clotho is that it cannot be layered below or above abstractions that do not

serialize versioning commands to virtual devices consisting of multiple physical devices. There are

two instances of this issue: (i) when Clotho is layered below a virtual RAID device, or (ii) when Clotho

is used at the client-side with shared block devices. If Clotho is layered below a volume abstraction that

performs aggregation, policies for creating versions need to perform synchronized versioning across

aggregated devices to ensure data consistency. However, this may not be possible in a transparent

manner to higher system layers. We deal with this issue in RIBD, presented in Chapter 6, which supports

globally consistent versions combined with a lightweight transactional API to higher layers. In the

second case, when multiple clients have access to a shared block device, as is usually the case with

distributed block devices [Lee and Thekkath, 1996; Thekkath et al., 1997], Clotho cannot be layered on

top of the shared volume in each client, since internal metadata will become inconsistent across Clotho

instances. A solution to this problem is an interesting topic for future work.

Another limitation of Clotho is that it imposes a change in the block layout from the input to the

output layer due to the remap-on-write operation. In contrast to the copy-on-write approach, which has

major write overhead, remap-on-write with a logging policy may affect read performance, if free blocks

are scattered over the disk or if higher layers rely on a specific block placement, e.g. block 0 to x being

sequential on the disk. However, this is an issue not only with Clotho, but with any block-level layer

that performs logging, such as the systems described in [English and Alexander, 1992; Wang et al.,

1999; Wilkes et al., 1996; Sivathanu et al., 2003; Wilkes et al., 1996; Stodolsky et al., 1994]. This issue

is essentially related to the limitations of the block-level API and the imbalance in the I/O software

stack towards the file system. We believe that as block-level I/O subsystems become more complex and

CHAPTER 3. CLOTHO: TRANSPARENT DATA VERSIONING AT THE BLOCK I/O LEVEL 63

provide more functionality, general solutions to this problem will become necessary.

Finally, a drawback of using large extents for versioning in order to minimize metadata footprint is

that we may waste disk space. Coarse-grain versioning (extents) compared to versioning per sectors or

small logical blocks require copying or remapping a whole extent even if part of it has been modified.

This is not an issue related to remap-on-write or copy-on-write, but to the granularity of versioning

blocks. Depending on the file system and workload, a tradeoff between the size of the metadata footprint

and the versioning granularity should be made to minimize wasted disk space.

3.6 Conclusions

Storage management is an important problem in building future storage systems. Online storage ver-

sioning can help reduce these costs directly, by addressing data archival and retrieval costs and indirectly,

by providing novel storage functionality. In this chapter we propose pushing versioning functionality

closer to the disk and implementing it at the block-device level. This approach takes advantage of tech-

nology trends in building active self-managed storage systems to address issues related to backup and

version management.

We present a detailed design of our system, Clotho, that provides versioning at the block-level.

Clotho imposes small memory and disk space overhead for version data and metadata management by

using large extents, sub-extent addressing and diff-based compaction. It imposes minimal performance

overhead in the I/O path by eliminating the need for copy-on-write even when the extent size is larger

than the disk-block size and by employing logging (sequential) disk allocation. It provides mechanisms

for dealing with data consistency and allows for flexible policies for both manual and automatic version

management.

We implement our system in the Linux operating system and evaluate its impact on I/O path per-

formance with both micro-benchmarks as well as the SPEC SFS standard benchmark on top of two

production-level file systems, Ext2FS and ReiserFS. We find that the common path overhead is minimal

for read and write I/O operations when versions are not compacted. For compact versions, the user has

to pay the penalty of double disk accesses for each I/O operation that accesses a compact block.

Overall, our work in block-level versioning has allowed us to explore the usefulness, the mechanisms

and the overheads associated with designing and implementing metadata-intensive functions at the block

level. We find that block-level versioning has low overhead and offers advantages over filesystem-based

approaches, such as transparency and simplicity. We thus believe that it is worthwhile to add support for

CHAPTER 3. CLOTHO: TRANSPARENT DATA VERSIONING AT THE BLOCK I/O LEVEL 64

extensions with advanced, metadata-intensive functionality at the block-level, in order to allow flexible

creation of customized application-specific storage volumes. We present our efforts in this direction in

the next chapter.

Chapter 4

Violin: A Framework for Extensible

Block-level Storage

Life is like playing the violin in public

and learning the instrument as one goes on.

—Samuel Butler (1835 - 1902)

The content of this chapter roughly corresponds to publication [Flouris and Bilas, 2005].

4.1 Introduction

The quality of virtualization mechanisms provided by a storage system affects storage management

complexity and storage efficiency, both of which are important problems of modern storage systems.

Storage virtualization may occur either at the filesystem or at the block level. Although both approaches

are currently being used, in this thesis we address virtualization issues at the block-level. Storage virtu-

alization at the filesystem level has mainly appeared in the form of extensible filesystems [Heidemann

and Popek, 1994; Schermerhorn et al., 2001; Skinner and Wong, 1993; Zadok and Nieh, 2000].

We believe that the importance of block-level virtualization is increasing for two reasons. First,

certain virtualization functions, such as compression or encryption, may be simpler and more efficient

to provide on unstructured fixed data blocks rather than variable-size files. Second, block-level storage

systems are evolving from simple disks and fixed controllers to powerful storage nodes [Acharya et al.,

1998; Gibson et al., 1998; Gray, 2002] that offer block-level storage to multiple applications over a stor-

65

CHAPTER 4. VIOLIN: A FRAMEWORK FOR EXTENSIBLE BLOCK-LEVEL STORAGE 66

age area network [Barker and Massiglia, 2002; Patterson, 2000]. In such systems, block-level storage

extensions can exploit the processing capacity of the storage nodes, where filesystems (running on the

servers) cannot. For these reasons and over time, with the evolution of storage technology a number

of virtualization features, e.g. volume management functions, RAID, snapshots, moved from higher

system layers to the block level.

Today’s operating systems provide flexibility in managing and accessing storage through I/O drivers

(modules) in the I/O stack or through the filesystem. For instance, Linux-based storage systems use

drivers, such as MD [De Icaza et al., 1997] and LVM [Teigland and Mauelshagen, 2001] to support

RAID and logical volume management functions. Another example is block-level versioning systems,

such as Clotho presented in the Chapter 3.

However, through our experience with Clotho we found that in order to add more block-level fea-

tures, we are limited by the fact that current I/O stacks require the use of monolithic I/O drivers that

are both complex to develop and hard to combine to build storage volumes with advanced, customized

features. That is why current block-level systems offer predefined virtualization semantics without

metadata-intensive functions, such as virtual volumes mapped to an aggregation of disks or RAID lev-

els. In this category belong both research prototypes [De Icaza et al., 1997; EVMS; GEOM; Lehey,

1999; Teigland and Mauelshagen, 2001] and commercial products [EMC Enginuity; EMC Symmetrix;

HP OpenView; Veritas, b,c]. In all these cases the storage administrator can tune various parameters at

the volume level, but cannot extend the system with new, metadata-intensive functions.

In this chapter we address this problem by providing a kernel-level framework for (i) building and

(ii) combining virtualization functions. We propose, implement, and evaluate Violin (Virtual I/O Layer

INtegrator), a virtual I/O framework for commodity storage nodes that replaces the current block-level

I/O stack with an improved I/O hierarchy that allows for (i) easy extension of the storage hierarchy with

new mechanisms and (ii) flexible combining of these mechanisms to create modular hierarchies with

rich semantics.

Although our approach shares similarities with work in modular and extensible filesystems [Heide-

mann and Popek, 1994; Schermerhorn et al., 2001; Skinner and Wong, 1993; Zadok and Nieh, 2000]

and network protocol stacks [Kohler et al., 2000; Mosberger and Peterson, 1996; O’Malley and Peter-

son, 1992; Van Renesse et al., 1995], existing techniques from these areas are not directly applicable to

block-level storage virtualization. A fundamental difference from network stacks is that the latter are

essentially stateless (except for configuration information) and packets are ephemeral, whereas storage

CHAPTER 4. VIOLIN: A FRAMEWORK FOR EXTENSIBLE BLOCK-LEVEL STORAGE 67

Disk Device Drivers

Disks

Block I/OFilesystem
Buffer Cache Raw I/O

User Space

Kernel Space

kernel m
odule

V
iolin

Filesystem
Apps

Block I/O
Apps

Raw I/O Apps

Violin context

User extensions

Kernel components Modules
Violin

LXT

Persistent
Metadata

High−level
I/O API

Figure 4.1: Violin in the operating system context.

blocks and their associated metadata need to persist. Compared to extensible filesystems, block-level

storage systems operate at a different granularity, with no information about the relationships of blocks.

Thus, metadata need to be maintained at the block level resulting potentially in large memory over-

head. Moreover, block I/O operations cannot be associated precisely with each other, limiting possible

optimizations.

The main contributions of Violin are: (i) it significantly reduces the effort to introduce new function-

ality in the block I/O stack of a commodity storage node and (ii) it provides the ability to combine simple

virtualization functions into hierarchies with semantics that can satisfy diverse application needs. Violin

provides virtual devices with full access to both the request and completion paths of I/Os allowing for

easy implementation of synchronous and asynchronous I/O. Supporting asynchronous I/O is important

for performance reasons, but also raises significant challenges when implemented in real systems. Also,

Violin deals with metadata persistence for the full storage hierarchy, offloading the related complexity

from individual virtual devices. To achieve flexibility, Violin allows storage administrators to create ar-

bitrary, acyclic graphs of virtual devices, each adding to the functionality of the successor devices in the

graph. In each hierarchy, blocks of each virtual device can be mapped in arbitrary ways to the successor

devices, enabling advanced storage functions, such as dynamic relocation of blocks.

We have implemented Violin as a block device driver under Linux. To demonstrate the effectiveness

of our approach in extending the I/O hierarchy we have also implemented various virtual modules as

dynamically loadable kernel devices that bind to Violin’s API. We have also developed simple user

level tools that are able to perform on-line fine-grain configuration, control, and monitoring of arbitrary

hierarchies of instances of these modules.

We evaluate the effectiveness of our approach in three areas: ease of development, flexibility, and

CHAPTER 4. VIOLIN: A FRAMEWORK FOR EXTENSIBLE BLOCK-LEVEL STORAGE 68

performance. In the first area we are able to quickly prototype modules for RAID levels, versioning,

partitioning and aggregation, MD5 hashing, migration and encryption. In many cases, writing a new

module is just a matter of recompiling existing user-level library code. Overall, using Violin encourages

the development of simple virtual modules that can later be combined to more complex hierarchies.

Regarding flexibility, we are able to easily configure I/O hierarchies that combine the functionality of

multiple layers and provide complex high-level semantics that are difficult to achieve otherwise. Finally,

we use PostMark and IOmeter to examine the overhead that Violin introduces over traditional block-

level I/O hierarchies. We find that overall, internal modules perform within 10% (throughput) of their

native Linux block-driver counterparts.

The rest of the chapter is organized as follows. Sections 4.2 and 4.3 present the design and im-

plementation of Violin. Section 4.4 presents our results. Finally, Section 4.5 discusses limitations and

future work and Section 4.6 draws our conclusions.

4.2 System Architecture

Violin is a virtual I/O framework that provides (i) support for easy and incremental extensions to I/O

hierarchies and (ii) a highly configurable virtualization stack that combines basic storage layers in rich

virtual I/O hierarchies. Violin’s location in the kernel context is shown in Figure 4.1, illustrating the

I/O path from the user applications to the disks. There are three basic components in the architecture of

Violin:

1. High-level virtualization semantics and mappings.

2. Simple control over the I/O request path.

3. Metadata state persistence.

Next we discuss each of these components in detail.

4.2.1 Virtualization Semantics

A virtual storage hierarchy is generally represented by a directed acyclic graph (DAG). In this graph,

the vertices or nodes represent virtual devices. The directed edges between nodes signify device depen-

dencies and control flow through I/O requests. Control in Violin flows from higher to lower layers. This

CHAPTER 4. VIOLIN: A FRAMEWORK FOR EXTENSIBLE BLOCK-LEVEL STORAGE 69

Source Source Source

Input Capacities: Output Capacities:

Sink SinkSinkSink Sink

In
te

rn
al

 D
ev

ic
es

 (
A

−
M

)

Hierarchy A Hierarchy B

A B C D

E

F

G

H

I J

M

K

L

Figure 4.2: Violin’s virtual device graph.

arises from the traditional view of the block-level device as a dumb passive device. Each virtual device

in the DAG is operated by a virtualization module that implements desired functionality. Virtual devices

that provide the same functionality are handled by different instances of the same module. From now

on, we will use the terms module and device interchangeably.

Figure 4.2 shows an example of such a device graph. Graph nodes are represented with horizontal

bars illustrating the mappings of their address spaces and they are connected with directed vertices.

There are three kinds of nodes and accordingly three kinds of I/O modules in the architecture:

• Source nodes that do not have incoming edges and are top-level devices that initiate I/O requests

in the storage hierarchy. The requests are initiated by external kernel components such as file

systems or other block-level storage applications. Each of the source devices has an external

name, e.g. an entry in /dev for Unix systems.

• Sink nodes that do not have outgoing edges and correspond to bottom-level virtual devices. Sink

nodes sit on top of other kernel block-level drivers, such as hardware disk drivers and, in practice,

are the final recipients of I/O requests.

• Internal nodes that have both incoming and outgoing edges and provide virtualization functions.

These nodes are not visible to external drivers, kernel components, or user applications.

CHAPTER 4. VIOLIN: A FRAMEWORK FOR EXTENSIBLE BLOCK-LEVEL STORAGE 70

Violin uses the above generic DAG representation to model its hierarchies. A virtual hierarchy is

defined as a set of connected nodes in the device graph that do not have links to nodes outside the

hierarchy. A hierarchy within a device graph is a self-contained sub-graph that can be configured and

managed independently of other hierarchies in the same system. Hierarchies in Violin are objects that

are explicitly created before adding virtual devices (nodes).

To manage devices and hierarchies, users may specify the following operations on the device graph:

• Create a new internal, source, or sink node and link it to the appropriate nodes, depending on its

type. The DAG is created in a bottom-up fashion to guarantee that an I/O sink will always exist

for any I/O path.

• Delete a node from the graph. A node may be deleted only if its input devices have been deleted

(top-down).

• Change an edge in the graph, i.e. remap a device.

Violin checks the integrity of a hierarchy at creation time and each time it is reconstructed. Checking

for integrity includes various simple rules, such as the presence of cycles in the hierarchy graph and lack

of input or output edges in internal nodes. Creating hierarchies and checking dependencies reduces the

complexity of each Violin module.

A hierarchy in Violin is constructed with simple user-level tools implementing the above graph

operations and linking the source and sink nodes to external OS block devices. Currently, the storage

administrator has to specify the exact order in which virtual devices will be combined. The user-level

tools can also be used online, during system operation to modify or extend I/O hierarchies. However,

it is the administrator’s responsibility to maintain data consistency while performing online structural

changes to a hierarchy.

Dynamic Block Mapping and Allocation

Nodes in a hierarchy graph do not simply show output dependencies from one device to another but

rather map between block address spaces of these devices. As can be seen in Figure 4.2, a storage

device in the system represents a specific storage capacity and a block address space, while the I/O path

in the graph represents a series of translations between block address spaces. Violin provides transparent

and persistent translation between device address spaces in virtual hierarchies.

CHAPTER 4. VIOLIN: A FRAMEWORK FOR EXTENSIBLE BLOCK-LEVEL STORAGE 71

0 1 2 3 4 5 6 7 8 ...
LXT0 1 43 6 87 ...0 1 2 3 4 5 6 7 8 Input Address Space

Output Address Space

Figure 4.3: The LXT address translation table.

Devices in a virtual hierarchy may have widely different requirements for mapping semantics. Some

devices, such as RAID-0, use simple mapping semantics. In RAID-0 blocks are mapped statically be-

tween the input and output devices. There are, however, modules that require more complex mappings.

For instance, versioning at the block level requires arbitrary translations and dynamic block remappings,

as discussed in Chapter 3. Similarly, volume managers [Teigland and Mauelshagen, 2001] require arbi-

trary block mappings to support volume resizing and data migration between devices. Another use of

arbitrary mappings is to change the device allocation policy, for instance, to a log-structured policy. The

Logical Disk [De Jonge et al., 1993] uses dynamic block remapping for this purpose.

Violin supports dynamic block mapping through a logical-to-physical block address translation table

(LXT). Figure 4.3 shows an example of such an LXT mapping between the input and output address

spaces of a device. Dynamic block mapping capabilities give to a virtual device the freedom to use

its own disk space management mechanisms and policies, without changing the semantics of its input

devices, higher in the I/O stack.

Additionally, Violin provides free-block allocation and management facilities. It offers a variety of

disk allocation schemes, including first-available, log-structured, and closer-to-last-block, all of which

use either a free list (FL) or a physical block bitmap (PXB) to distinguish between occupied and free

physical blocks. However, since modules may need their own space allocation algorithm, Violin al-

lows module code to directly access the PXB data structure as well as its persistent metadata objects

(explained below). In this case, however, code and complexity increase for the module developer.

The API for dynamic block mapping and allocation is shown in Figure 4.4. Since the LXT and the

PXB are addressed in extents (explained below), the library functions take as arguments an extent num-

ber, which addresses an LXT or PXB entry. Functions get / set lxt bool flag on/off() handle

binary flag values that can be maintained on the LXT for the extents of a device. This is useful for mod-

ules that tag extents according to their properties (e.g. clean/dirty). Functions vl phys address get

/ set() handle the physical addresses stored on the LXT entries. Functions vl phys extent alloc()

CHAPTER 4. VIOLIN: A FRAMEWORK FOR EXTENSIBLE BLOCK-LEVEL STORAGE 72

err_code vl_alloc_lxt(_device_t *dev);

err_code vl_alloc_pxb(_device_t *dev);

int get/set_lxt_bool_flag_on/off(int extent, VL_FLAGMASK_TYPE flagmask);

int vl_phys_address_get/set(int extent);

int vl_phys_extent_alloc(int alloc_policy);

void vl_phys_extent_free(int extent);

Figure 4.4: Violin API for LXT and PXB data structures.

and vl phys extent free() operate on the PXB bitmap. The first routine locates a free physical

block (according to an algorithm) and marks it on the PXB, while the second frees a used data block

and clears its PXB bit.

The LXT and PXB data structures are allocated as persistent objects using the persistent metadata

calls we describe in Section 4.2.3 and their persistence is handled automatically by Violin similarly to

the rest of the hierarchy metadata.

An issue with supporting arbitrary block mappings is the size of LXT and FL or PXB persistent

objects, which can become quite large, depending on the capacity and block size of a device. Keeping

such objects in memory can increase memory footprint substantially. Violin offers two solutions: First,

it supports an internal block size (“extent size”) for its devices, which is independent of the OS device

block size. The extent size, in other words, is a fixed logical block for the device and is specified when

a device is created. Increasing the extent size can greatly reduce the size of the LXT. For example, the

LXT of a 1 TByte device with 32-bit extent addressing and 4 KByte extent size would require about 1

GByte of memory. By increasing the extent size to 32 KBytes, we achieve a reduction of the required

metadata to 128 MBytes. Second, Violin provides the capability to explicitly load and unload persistent

metadata to and from memory, as explained in Section 4.2.3.

4.2.2 Violin I/O Request Path

The second significant aspect of Violin is how the I/O request path works. Violin is not only reentrant but

also supports synchronous and asynchronous I/O requests. I/O requests never block in the framework,

unless a driver module has explicitly requested it. Moreover, since Violin is reentrant, it runs in the

issuer’s context for each request issued from the kernel. Thus, many requests can proceed concurrently

in the framework, each in a different context.

CHAPTER 4. VIOLIN: A FRAMEWORK FOR EXTENSIBLE BLOCK-LEVEL STORAGE 73

SourceSource

<

<

<

<

Fwd Path
Return Path

A B

SinkSink

A B

SinkSink

C

D

E

F

Fwd to B

Fwd to D

Fwd to E

C

F

E

D

Fwd Path

Return Path

Fwd to D

Fwd to C

Fwd to E

Fwd
To Sink

>

<

<

<Tag Request
Complete

Figure 4.5: Example of request flows (dashed lines) through devices. Forward paths are directed down-

wards, while return paths upwards.

A generic virtual storage framework must support two types of I/O requests:

• External requests are initiated by the kernel. They enter the framework through the source devices

(nodes), traverse a hierarchy through internal nodes usually until they reach a sink node and then

return back up the same path to the top of the hierarchy.

• Internal requests are generated from internal devices as a response to an external request. Con-

sider for example a RAID-5 module that needs to write parity blocks. The RAID-5 device gen-

erates an internal write request to the parity device. Internal requests are indistinguishable from

external ones for all but the generating module and are handled in the same manner.

I/O requests in Violin move from source to sink nodes through some path in a virtual hierarchy,

as shown in Figure 4.5. Sink devices are connected to external block devices in the kernel, so after a

request reaches a sink device it is forwarded to an external device. When multiple output nodes exist,

routing decisions are taken at every node, according to its mapping semantics. Virtual devices can

control requests beyond simple forwarding. When a device receives an I/O request it can make four

control decisions and set corresponding control tags on a request:

• Error Tag indicates a request error. Erroneous requests are returned through the stack to the issuer

CHAPTER 4. VIOLIN: A FRAMEWORK FOR EXTENSIBLE BLOCK-LEVEL STORAGE 74

with an error code.

• Forward Tag indicates that the request should be forwarded to an output device. In this case, the

target device and block address must also be indicated. Forwarding occurs to the direction of one

of the output graph vertices.

• Return Control Path Tag indicates that a device needs return path control over the request. Some

devices need to know when an asynchronous I/O request has completed and need control over

its return path through the hierarchy (Figure 4.5). For instance, an encryption module requires

access to the return path of a read request, because data needs to be decrypted after it is read from

the sink device. However, many modules do not require return path control. If no module in a

path through the hierarchy requests return path control, the request is merely redirected to another

kernel device outside the framework (e.g. the disk driver) and returned directly to the issuer

application, bypassing the framework’s return-path control. If, however, some module requests

return-path control, the framework must gain control of the request when it completes in another

kernel device. In Violin’s Linux implementation, the driver sets an asynchronous callback on the

request to gain control when it completes. When the callback receives the completed request, it

passes it back up through the module stack in the reverse manner, calling the pop I/O handlers,

described later in the API Section 4.2.4. Errors in the return path are handled in a similar manner

as in the forward (request) path.

• Complete Tag indicates that a request is completed by this device. Consider the example of a

caching module in the hierarchy. A caching device is able to service requests either from its cache

or from the lower-level devices. If a requested data block is found in the cache, the device loads

the data in the request buffer and sets the “complete” tag. The completed request is not forwarded

deeper in the hierarchy, but returns from this point upwards to the issuer as shown at the right of

Figure 4.5 for device C. If the return control path tag is set, the framework passes control to the

devices in the stack that have requested it. Using this control tag, an internal device behaves as an

new internal sink device.

A final issue with I/O requests flowing through the framework is dependencies between requests. For

instance, there are cases where a module requires an external request to wait for one or more internal

requests to complete. To deal with this, when an internal request X is issued (asynchronously) the

CHAPTER 4. VIOLIN: A FRAMEWORK FOR EXTENSIBLE BLOCK-LEVEL STORAGE 75

void *vl_persistent_obj_alloc(int oid,int size);

void *vl_persistent_obj_[un]load(int oid);

void vl_persistent_obj_flush(int oid);

void vl_persistent_obj_free(int oid);

Figure 4.6: Violin API for metadata management.

issuer module may register one or more dependencies of X to other requests (Y, Z, ...) and provide

asynchronous callback functions. Requests X, Y, Z are processed concurrently and when each completes

the callback handler is called. The callback handler of the module then processes the dependent requests

according to the desired ordering (e.g. it may wait for all or a few requests to finish before releasing

them). This mechanism supports arbitrary dependencies among multiple requests. Cyclic dependencies

that lead to deadlock can occur by erroneous module code which is the responsibility of the module

developer. One simple such case is when a device sends requests to devices higher in the same I/O path

that can end up in the same module.

4.2.3 State Persistence

One of the most important issues in storage virtualization is metadata management and persistence.

Violin supports metadata management facilities. The three main issues associated with metadata are:

facilitating the use of persistent metadata, reducing memory footprint, and providing consistency guar-

antees.

Persistent Metadata

In Violin, modules can allocate and manage persistent metadata objects of varying sizes using the API

summarized in Figure 4.6. To allocate a metadata object, a module calls vl persistent obj alloc()

using a unique object ID and its size, as it would allocate memory.

Modules access metadata directly in memory, as any other data structure. However, since device

metadata are loaded dynamically when the device is initialized, pointers may not point to the right loca-

tion. There are two methods for addressing this issue: (i) disallow pointers in metadata accesses and (ii)

always force loading of metadata to the same address. Since the latter can be a problem for large meta-

data objects and in our experience the former is not overly restrictive, in our current design we disallow

pointers in metadata objects. However, this issue requires further investigation and is left for future

CHAPTER 4. VIOLIN: A FRAMEWORK FOR EXTENSIBLE BLOCK-LEVEL STORAGE 76

work. When a module needs to destroy a persistent object it calls the vl persistent obj free()

function.

By default, when a virtual device is created in Violin, the system stores its metadata in the same

output address space as the data. Alternatively, the user may specify explicitly a metadata device that

will be used for storing persistent metadata for the new virtual device. This can be very useful when

metadata devices are required to have stronger semantics compared to regular data devices, e.g. a higher

degree of redundancy.

Violin’s metadata manager automatically synchronizes dirty metadata from memory to stable stor-

age in an asynchronous manner. The metadata manager uses a separate kernel thread to write to the

appropriate device metadata that are loaded in memory. The user can also flush a metadata object ex-

plicitly with the vl persistent obj flush() call.

Internally, each metadata object is represented with an object descriptor, which is modified only by

allocation/deallocation calls. During these calls metadata object descriptors are stored in a small index

in the beginning of the metadata device. A pointer to the metadata header index is stored with each

virtual device in the virtual hierarchy. Thus, when the virtual hierarchy is being loaded and recreated,

Violin reads the device metadata and loads it to memory.

Reducing Memory Footprint

Large metadata objects may consume a large amount of main memory or incur large amounts of I/O

during metadata synchronization to stable storage. In these cases reducing the metadata memory foot-

print is important, in order to keep overheads low. Violin provides API calls for explicitly loading and

unloading metadata to and from memory within each module (Figure 4.6). Another possible solution is

to transparently swap metadata to stable storage. This solution is necessary for extremely large devices,

where the size of the required metadata can sometimes exceed the available memory of a machine.

Since it is not clear whether such modules actually need to be implemented, Violin does not support this

feature yet.

Violin retains a small amount of internal metadata that represent the hierarchy structure and are

necessary to reconstruct the device graph. Each graph node and edge requires a pointer, which amounts

to a few bytes per virtual device. The hierarchy metadata is saved in all physical devices within a

hierarchy. For this purpose, Violin reserves a superblock of a few KBytes in every physical device of a

hierarchy. A complete hierarchy configuration can thus be loaded from the superblock of any physical

CHAPTER 4. VIOLIN: A FRAMEWORK FOR EXTENSIBLE BLOCK-LEVEL STORAGE 77

device that belongs to the hierarchy.

In summary, each module needs to allocate its own metadata, and in the common case, where

metadata can be kept in memory, it does not need to perform any other operation. The framework will

keep metadata persistent and will reload the metadata from disk each time the virtual device is loaded,

significantly simplifying metadata management in individual modules.

Metadata Consistency

In the event of system failures, where a portion of the in-memory metadata may be lost or partially

written, application and/or Violin state may be corrupted. We can define the following levels of metadata

consistency:

1. Lazy-update consistency, that is, metadata are synchronized on disk overwriting the older version

every few seconds. This means that if a failure occurs between or during updates of metadata

then metadata may be left inconsistent on-disk and Violin may not be able to recover. In this case,

there is a need for a Violin-level recovery procedure (similar to fsck), which however, we do

not currently provide. This level of consistency would be sufficient when systems are expected to

crash infrequently (e.g. when they are considered stable and are supported by an uninterruptible

power supply (UPS)). If, however, a system is expected to crash often and/or stronger consistency

guarantees are required, then one of the next forms of consistency may be used instead.

2. Shadow-update consistency, where we use two metadata copies on disk and maintain at least

one of the two consistent at all times. If during an update the set that is currently being written

becomes inconsistent due to a failure, Violin uses the second copy to recover. In this case, it is

guaranteed that Violin will recover the device hierarchy and all its persistent objects and will be

able to service I/O requests. However, application data may be inconsistent with respect to system

metadata.

3. Atomic metadata consistency, guarantees that after a failure, the system will be able to access a

previous, consistent state of application data and system metadata. This level of consistency can

be implemented using a roll-forward log (journal) [Hagmann, 1987], or a roll-back versioning

scheme. In the former case the log is played forward for recovery, while the latter is equivalent to

a rollback of metadata to a previous point in time. The second option can be achieved in Violin

using a versioning layer similar to Clotho (Chapter 3) at the leaves of a hierarchy. Although such

CHAPTER 4. VIOLIN: A FRAMEWORK FOR EXTENSIBLE BLOCK-LEVEL STORAGE 78

-> initialize (_device_t *dev, ...);

-> open (_device_t *dev,void *data);

-> close (_device_t *dev,void *data);

-> read_push (_device_t *dev, ...);

-> read_pop (_device_t *dev, ...);

-> write_push (_device_t *dev, ...);

-> write_pop (_device_t *dev, ...);

-> ioctl (_device_t *dev, int cmd, ...);

-> resize (_device_t *dev, int new_size);

-> device_info (_device_t *dev, ...);

Figure 4.7: API methods for Violin’s I/O modules.

a layer is available in Violin, given its current implementation we need to slightly modify it so

that its own metadata are handled differently in this particular case.

Violin currently supports the first and second forms of metadata consistency. We expect that all

three forms of consistency will be available in the future versions of the framework code.

4.2.4 Module API

Extending an I/O hierarchy with new functionality is an arduous task in modern kernels. The interface

provided by kernels for block I/O is fairly low-level. A block device driver has the role of servicing block

I/O read and write requests. Block requests adhere to the simple block I/O API, where every request

is denoted as a tuple of (block device,read/write,block number,block size,data). In

Linux, this API involves many tedious and error prone tasks, such as I/O request queue management,

locking and synchronization of the I/O request queues, buffer management, translating block addresses

and interfacing with the buffer cache and the VM subsystem.

Violin provides to its modules high-level API calls, that intuitively support its hierarchy model and

hide the complexity of kernel programming. The author of a module must set up a module object, which

consists of a small set of variables with the attributes of the implemented module and a set of methods

or API functions that can be seen in Figure 4.7. The variables of the module object in our current

implementation include various static pieces of information about each module, such as the module

name and id, the minimum and maximum number of output nodes supported by the device, and the

CHAPTER 4. VIOLIN: A FRAMEWORK FOR EXTENSIBLE BLOCK-LEVEL STORAGE 79

number of non-read and write (ioctl) operations supported by the module. The role of each method

prototype is:

• initialize() is called once, the first time a virtual device is created to allocate and initialize

persistent metadata and module data structures for this device. Note that since Violin retains state

in persistent objects, this method will not be called when a hierarchy is loaded, since device state

is also loaded.

• open(), close() are called when a virtual device is loaded or unloaded during the construction

of hierarchy. The module writer can use the close() call to perform garbage collection and other

necessary tasks for shutting down the device.

• read(), write() handle I/O requests passed to a virtual device. Each has two methods, push

and pop, that represent the different I/O paths. Push handlers are called in the forward path,

while pop handlers are called in the return path, if requested. These API methods are higher-level

compared to their kernel counterparts and do not require complex I/O buffer management and I/O

queue management.

• ioctl() handles custom commands and events in a module, in case direct access to it is required.

This is used in some of our modules, for example to explicitly trigger a version capture event in

the versioning module.

• resize() is an optional method that specifies a new size for an output virtual device. When this

method is called in a virtual device, it means that one of its output devices has changed size as

specified and thus, the virtual device has to adjust all internal module metadata appropriately.

• device info() is used to export runtime device information in human or machine readable

form.

The main difference of this API from the classic block driver API in Unix systems is the distinct

push() and pop() methods for read and write operations, versus a read(), write() in the classic API. This

is the key features of Violin’s API, that allows asynchronous behavior. Finally the role of the initial-

ize() call is different from the classic API. Since state persistence is maintained, device initialization is

necessary only once in its lifetime, at its creation.

CHAPTER 4. VIOLIN: A FRAMEWORK FOR EXTENSIBLE BLOCK-LEVEL STORAGE 80

method
bindings

init()
read()
write()

....

init()
read()
write()

....

Violin’s Module Objects

Violin context

Kernel Space

init()
read()
write()

....

init()
read()
write()

....

Kernel module A Kernel module CKernel module B

Figure 4.8: Binding of extension modules to Violin.

4.3 System Implementation

We have implemented Violin as a loadable block device driver in the Linux 2.4 kernel accompanied by a

set of simple user-level management tools. Our prototype implements fully the I/O path model described

in Section 4.2.4. Violin extension modules are implemented as separate kernel modules that are loaded

on demand. However, they are not full Linux device drivers themselves but require the framework’s

core. Upon loading, each module registers with the core framework module, binding its methods to

internal module objects as shown in Figure 4.8.

A central issue with the Violin driver is the implementation of its asynchronous API on Linux 2.4.

Next, we explain how I/O requests are processed in Linux block device drivers and then describe Violin’s

implementation.

4.3.1 I/O Request Processing in Linux

The Linux kernel uses an I/O request structure to schedule I/O operations to block devices. Every

block device driver has an I/O request queue, containing all the I/O operations intended for this block

device. Requests are placed in this queue by the kernel function make request fn(). This function

can be overridden by a block driver’s own implementation. Requests are removed from the queue and

processed with the strategy or request function of a block driver. When a request is complete, the driver

releases the I/O request structure back to the kernel after tagging it as successful or erroneous. If a

released request is not appropriately tagged or the data is incorrect, the kernel may crash.

Thus, there are two ways of processing I/O requests in a Linux device driver. First, a device driver

can use a request queue as above where the kernel places requests and the strategy driver function

removes and processes them. This approach is used by most hardware block devices. Second, a driver

may override the make request fn() kernel function with its own version and thus, gain control of

every I/O request before it is placed in the request queue. This mode of operation is more appropriate

CHAPTER 4. VIOLIN: A FRAMEWORK FOR EXTENSIBLE BLOCK-LEVEL STORAGE 81

read_push()

write_push()

write_pop()

read_pop()

D
ev

ic
e

Y

read_push()

write_push()

write_pop()

read_pop()

D
ev

ic
e

X

read_push()

write_push()

write_pop()

read_pop()

D
ev

ic
e

Z

end of stack

2

3

5

6

7
8

9

11

V
io

lin
 C

or
e

D
ri

ve
r

1
Write

block request

4

Return comlete request to kernel

13
io_done_callback()

from kernel

(if return path control required)

10

12

Framework
internal functions

/dev/vld1
External Block Devices

Internal Device Hierarchy

with module methods

make_request_fn()

issue_async_external_io()

pop_device_stack()

push_device_stack()

(Disk)

/dev/sdg

(Disk)

/dev/hdc

Figure 4.9: Path of a write request in Violin.

for virtual I/O drivers. In this mode, the driver does not use an I/O request queue, but rather redirects

requests to other block devices. This is the mode of operation used by many virtual I/O drivers, such as

LVM and MD. When a new I/O request arrives, the device driver performs simple modifications to the

I/O request structure, such as modifying the device ID and/or the block address and returns the request

to the kernel that will redirect it to the new device ID.

4.3.2 Violin I/O path

Violin uses the method of replacing the make request fn() call and operates asynchronously without

blocking inside this function. For every external I/O request received through the make request fn()

call, Violin’s device driver traverses the I/O stack and calls the necessary module I/O handlers (read push()

or write push() depending on the type of request). The I/O path traversal for a write request can be

seen in Figure 4.9.

Each handler processes the incoming request (modifying its address, data, or both) and then returns

control to the push device stack() function, indicating the next device in the path from one of its

dependent (or lower) devices, marked with outward arrows. Thus, the push device stack() function

passes the request through all the devices in the path. When the request reaches an exit node, the driver

issues an asynchronous request to the kernel to perform the actual physical I/O to another kernel driver

(e.g. the disk driver). When return path control is needed, the driver uses callback functions that Linux

attaches to I/O buffers. Using these callbacks the driver is able to regain control of the I/O requests

when they complete in another driver’s context and perform all necessary post-processing.

CHAPTER 4. VIOLIN: A FRAMEWORK FOR EXTENSIBLE BLOCK-LEVEL STORAGE 82

A Linux-specific issue that Violin’s kernel driver must deal with, is handling buffer cache data that

need module processing and modification (e.g. encryption). The Linux kernel I/O request descriptors

contain pointers to memory pages with the data mapped by the buffer cache and other kernel layers, e.g.

the filesystem, to disk blocks. While an I/O request is in progress, the memory page remains available

for read access in the buffer cache. Data-modifying layers, e.g. encryption, however, need to transform

the data on the page before writing it to the disk. Data modification on the original memory page results

in the corruption of the filesystem and buffer cache buffers. To resolve this problem with data-modifying

modules, Violin creates a copy of the memory page, where modules can modify the data, and writes the

new page to the disk. The original page remains available in the buffer cache.

4.4 Evaluation

In this section we evaluate the effectiveness of Violin in three areas: ease of development, flexibility,

and performance.

4.4.1 Ease of Development

Measuring development effort is a hard task, since there exist no widely accepted metrics for it. We

attempt to quantify the development effort by looking at the code size reduction that we can achieve

using Violin. Similar to FiST [Zadok and Nieh, 2000], we use code size as a metric to examine relative

complexity. We compare code sizes of various block device drivers that exist for Linux with implemen-

tations of these modules under Violin:

• RAID: Implements RAID levels 0 and 1. Failure detection and recovery is also implemented for

RAID level 1. Using Violin’s ability to synthesize complex hierarchies, these modules can be

used to create composite RAID levels, such as 1+0.

• Versioning: Implements the on-line block-level versioning functionality of Clotho in a Violin

hierarchy. The design of Clotho was presented in Chapter 3.

• Partitioning: Creates a partition on top of another device. It supports partition tables and partition

resizing.

• Aggregation: Functions as a volume group manager. It aggregates many devices into one, either

appending each after the other or using striping, and allows resizing of the individual or aggregate

CHAPTER 4. VIOLIN: A FRAMEWORK FOR EXTENSIBLE BLOCK-LEVEL STORAGE 83

Virtualization Number of code lines

Layers / Functions Linux Driver Violin Module

RAID 11223 (MD) 2509

Partition & 5141 (LVM) 1521

Aggregation

Versioning 4770 (Clotho) 809

MD5 Hashing – 930

Blowfish Encryption – 804

DES & 3DES Encryption – 1526

Migration – 422

Core Violin Framework 14162 –

Table 4.1: Linux drivers and Violin modules in kernel code lines.

device. Also, devices can be added or removed and data can be migrated from one device to

another.

• MD5 hashing: Computes the MD5 fingerprint for each block. Fingerprints are inserted in a hash

table and can be queried. Its purpose is to offer content-based search capabilities and facilitate

differential compression.

• Encryption: Encrypts/decrypts data blocks, using a user-specified key. We have currently imple-

mented the Blowfish, DES and 3DES encryption algorithms.

• Online Migration: Transparently migrates data from one device to another, at a user-controlled

speed (throttling).

Table 4.1 shows the code size for each functional layer implemented as a driver under Linux and as

a module under Violin. The features implemented in Violin modules are close to the features provided

by the block drivers under Linux, including LVM. The only exception exists in the MD Linux [De Icaza

et al., 1997] driver. Our implementation, although it includes code for failure detection and recovery in

RAID, does not support the feature of spare disks in a RAID volume. The main reason for not adding

this functionality is that we expect it to be handled by remapping failed disks to spare ones with Violin.

CHAPTER 4. VIOLIN: A FRAMEWORK FOR EXTENSIBLE BLOCK-LEVEL STORAGE 84

We see that the size of the Violin framework core is about 14200 lines of code. Looking at individual

modules, in the case of LVM, code length is reduced by a factor of three, while in MD and Versioning

the reduction is about a factor of four and six respectively. In MD, more than half of the module code

(1300 lines) is copied from MD and is used for fast XOR computation. This piece of code is written

mainly in assembly and tests various XOR implementations for speed in order to select the fastest one

for each system. If we compute code-length differences without the user-level copied code, i.e. the

XOR code, the code difference for the RAID module reaches an order of magnitude.

Clearly code size cannot be used as a precise measure of complexity. However, it is an indication

of the reduction in effort when implementing new functionality under Violin. For the modules we im-

plement, we can attribute the largest code reductions to the high-level module API and to the persistent

metadata management support.

To examine how new functionality can be provided under Violin, we implement two new modules

for which we could not find corresponding Linux drivers: MD5 hashing and DES-type encryption. For

each module we use publicly available user-level code. Table 4.1 shows that MD5 hashing is about 900

lines of code in Violin out of which 416 lines are copied from the user-level code. Similarly, our DES

encryption module uses about 1180 lines of user-level code, out of a total of 1526 lines. Creating each

module was an effort of just a few hours.

4.4.2 Flexibility

To demonstrate the flexibility of the proposed framework we show how one can create more complex

multi-layered hierarchies by combining simple modules. Providing the same functionality with standard

OS mechanisms is much more difficult. In this demonstration, we construct a complex hierarchy of

virtual devices over a set of physical devices, adding one layer at a time.

Figure 4.10 depicts how such a hierarchy is built in a bottom-up fashion using simple user-level

tools. Initially two disks are inserted in the hierarchy as sink devices. Next, a partitioning layer is

added, which creates two partitions, one on each disk. Then, a RAID-0 layer creates a striped volume

on top of the two partitions. Next, a versioning layer is added on top of the striped volume to provide

online versioning. Finally, a Blowfish encryption layer is added in the hierarchy to encrypt data. While

this module can be placed anywhere in the hierarchy, we chose to place it directly above the disks.

Overall, we find that Violin simplifies the creation of complex hierarchies that provide advanced

functionality, once the corresponding modules are available.

CHAPTER 4. VIOLIN: A FRAMEWORK FOR EXTENSIBLE BLOCK-LEVEL STORAGE 85

PARTITION

PARTITION

RAID−0

DiskBLOWFISH

DiskBLOWFISH

VERSIONING

#SCRIPT TO CREATE THE HIERARCHY:

#Initialize a hierarchy named "voila"

hrc_init /dev/vld voila 32768 1

#Import two IDE disks: /dev/hdb and /dev/hdc

dev_import /dev/vld /dev/hdb voila hdb

dev_import /dev/vld /dev/hdc voila hdc

#Create a Blowfish Encryption Layer on each disk

dev_create /dev/vld Blowfish voila BF_Dev_1 1 hdb BF_Dev_1 0

dev_create /dev/vld Blowfish voila BF_Dev_2 1 hdc BF_Dev_2 0

#Create two Partitions on top of these

dev_create /dev/vld Partition voila Part_Dev_1 1 BF_Dev_1 -1 900000 Part_Dev_1 0

dev_create /dev/vld Partition voila Part_Dev_2 1 BF_Dev_2 -1 900000 Part_Dev_2 0

#Create a RAID-0 device on the 2 partitions

dev_create /dev/vld RAID voila RAID0_Dev 2 Part_Dev_1 Part_Dev_2 0 32 RAID0_Dev 0

#Create a Versioned device on top

dev_create /dev/vld Versioning voila Version_Dev 1 RAID0_Dev 40 Version_Dev 200000

#Link hierarchy "voila" to /dev/vld1

dev_linkpart /dev/vld voila Version_Dev 1

#Make a filesystem on /dev/vld1 and mount it

mkfs.ext2 /dev/vld1

mount -t ext2 /dev/vld1 /vldisk

Figure 4.10: A hierarchy with advanced semantics and the script that creates it.

CHAPTER 4. VIOLIN: A FRAMEWORK FOR EXTENSIBLE BLOCK-LEVEL STORAGE 86

512B

 1K
B

 2K
B

 4K
B

 8K
B

16K
B

32K
B

64K
B

Block size

0

10

20

30

40

50

60

70

80

M
B

yt
es

 /
se

c

IOmeter throughput for Violin Raw Disk vs. System Raw Disk for One Disk

Violin Raw Disk - 100% Read
Violin Raw Disk - 100% Write
Violin Raw Disk - 70% Read, 30% Write

512B

 1K
B

 2K
B

 4K
B

 8K
B

16K
B

32K
B

64K
B

Block size

0

1

2

3

4

5

6

7

8

M
B

yt
es

 /
se

c

Raw System Disk - 100% Read
Raw System Disk - 100% Write
Raw System Disk - 70% Read, 30% Write

Figure 4.11: Raw disk throughput (MBytes/sec) for sequential (left) and random (right) workloads.

4.4.3 Performance

To evaluate the performance of Violin we use two well-known I/O benchmarks, Iometer [Iometer] and

PostMark [Katcher]. Iometer is a benchmark that generates and measures I/O workloads with various

parameters. PostMark is a synthetic benchmark that emulates the operation of a mail server. PostMark

runs on top of a filesystem, while Iometer runs on raw block devices.

The system we use in our evaluation is a commodity x86-based Linux machine, with two AMD

Athlon MP 2200+ CPUs, 512 MB RAM, three Western Digital WDC WD800BB-00CAA1 ATA Hard

Disks with 80 GB capacity, 2MB cache, and UDMA-100 support. The OS is Red Hat Linux 9.0, with

RedHat’s latest 2.4.20-31.9smp kernel.

First, we examine the performance of single Violin modules compared to their Linux driver counter-

parts. We use three different configurations: raw disk, RAID, and logical volume management. In each

configuration we use layers implemented as a block driver under Linux and as modules under Violin:

A. The raw Linux disk driver (Disk) vs. a pass-through module in Violin (Disk Module). The same

physical disk partition is used in both cases.

CHAPTER 4. VIOLIN: A FRAMEWORK FOR EXTENSIBLE BLOCK-LEVEL STORAGE 87

512B

 1K
B

 2K
B

 4K
B

 8K
B

16K
B

32K
B

64K
B

Block size

0

10

20

30

40

50

60

70

80
M

B
yt

es
 /

se
c

IOmeter throughput for Violin Aggregation+Partition vs. LVM for 2 Striped Disks (32K stripe)

Violin Aggr+Part - 100% Read
Violin Aggr+Part - 100% Write
Violin Aggr+Part - 70% Read, 30% Write

512B

 1K
B

 2K
B

 4K
B

 8K
B

16K
B

32K
B

64K
B

Block size

0

1

2

3

4

5

6

7

8

M
B

yt
es

 /
se

c

LVM - 100% Read
LVM - 100% Write
LVM - 70% Read, 30% Write

Figure 4.12: LVM throughput (MBytes/sec) for sequential (left) and random (right) workloads.

B. The Linux Volume Manager driver (LVM) vs. a dual module setup in Violin using the partitioning

and aggregation modules (Aggr.+Part. Modules). In the Violin setup we use two disks that are

initially aggregated into a single resizable striped volume. On top of this large volume we create

a partition where the filesystem is created. In LVM we use the same setup. We initialize the same

disks into physical volumes, create a volume group consisting of the two disks, and finally create

a striped logical volume on top. The size of the stripe block is 32 KBytes in both setups.

C. The Linux MD driver (MD RAID-0 & 1) vs. the Violin RAID module (RAID-0 & 1 Module).

Both modules support RAID levels 0, 1, and 5. We compare performance of RAID levels 0

(striping) and 1 (mirroring) for MD and Violin. In both setups we use the same two disks and a

stripe block of 32 KBytes for RAID-0. Note that the system setup in the RAID-0 case is identical

to the LVM experiments, with the exception of different software layers being used.

Iometer

Iometer [Iometer] generates I/O workloads based on specified parameters (e.g. block size, randomness)

and measures them on raw block devices. We vary three parameters in our workloads: (i) Access pattern:

we use workloads that are either sequential or random. (ii) Read-to-write ratio: we explore three ratios,

CHAPTER 4. VIOLIN: A FRAMEWORK FOR EXTENSIBLE BLOCK-LEVEL STORAGE 88

512B

 1K
B

 2K
B

 4K
B

 8K
B

16K
B

32K
B

64K
B

Block size

0

10

20

30

40

50

60

70

80

M
B

yt
es

 /
se

c

IOmeter throughput for RAID-0: Violin vs. Linux MD for 2 Disks and 32KB Stripe

Violin RAID-0 - 100% Read
Violin RAID-0 - 100% Write
Violin RAID-0 - 70% Read, 30% Write

512B

 1K
B

 2K
B

 4K
B

 8K
B

16K
B

32K
B

64K
B

Block size

0

1

2

3

4

5

6

7

8

M
B

yt
es

 /
se

c

Linux MD RAID-0 - 100% Read
Linux MD RAID-0 - 100% Write
Linux MD RAID-0 - 70% Read - 30% Write

Figure 4.13: RAID-0 throughput (MBytes/sec) for sequential (left) and random (right) workloads.

100% reads, 100% writes and a mix of 70% reads - 30% writes. (iii) Block size: we use 512 byte to 64

KByte block sizes.

Figures 4.11-4.14 summarize our results with Iometer version 2004.07.30. Figure 4.11 compares

the performance of a pass-through to disk Violin module to the plain system disk. Figures 4.12, 4.13

and 4.14 compare the performance of Violin modules to their kernel counterparts, LVM and MD RAID

levels 0 and 1. The left column graphs represent sequential I/O performance, while the right graphs show

random I/O performance. In most cases we observe that the performance difference between similar

functionality modules is less than 10%. There are cases when Violin has a bit better performance than

the kernel drivers and cases when it performs a little worse.

The larger performance differences observed are: (i) a low sequential performance of LVM and

Violin modules for block sizes less than 4KB. This is due to their default block size for their device

drivers, which is set to 4KB, compared to 1KB for raw disk and the MD driver. This explains the steep

performance increase for Violin and LVM that is consistently observed between block sizes of 2KB and

4KB. Using a smaller system block size on Violin is possible, but requires changes to the current Violin

code. (ii) MD has higher performance for random write operations, both in RAID-0 and RAID-1 modes.

CHAPTER 4. VIOLIN: A FRAMEWORK FOR EXTENSIBLE BLOCK-LEVEL STORAGE 89

512B

 1K
B

 2K
B

 4K
B

 8K
B

16K
B

32K
B

64K
B

Block size

0

10

20

30

40

50

60

70

80

M
B

yt
es

 /
se

c

IOmeter throughput for RAID-1: Violin vs. Linux MD for 2 Disks

Violin RAID-1 - 100% Read
Violin RAID-1 - 100% Write
Violin RAID-1 - 70% Read, 30% Write

512B

 1K
B

 2K
B

 4K
B

 8K
B

16K
B

32K
B

64K
B

Block size

0

1

2

3

4

5

6

7

8

M
B

yt
es

 /
se

c

Linux MD RAID-1 - 100% Read
Linux MD RAID-1 - 100% Write
Linux MD RAID-1 - 70% Read, 30% Write

Figure 4.14: RAID-1 throughput (MBytes/sec) for sequential (left) and random (right) workloads.

This is due to MD’s optimized buffer cache management, which caches writes and can more effectively

cluster write requests. This is mainly a Linux implementation issue and we consider improving buffer

cache management in Violin’s driver as future work.

PostMark results

PostMark [Katcher] creates a pool of continually changing files on a filesystem and measures the trans-

action rate for a workload approximating a large Internet electronic mail server. Initially a pool of

random text files is generated, ranging in size from a configurable low bound to a configurable high

bound. Once the pool has been created, a specified number of transactions occurs. Each transaction can

be one of two pairs of I/O operations: (i) create file or delete file and (ii) read file or append file. Each

transaction type and its affected files are chosen randomly. When all of the transactions have completed,

the remaining active files are deleted.

To evaluate the performance of each configuration, we use a workload consisting of: (i) files ranging

from 100KBytes to 10MBytes in size, (ii) an initial pool of 1000 files, and (iii) 3000 file transactions with

equal biases for read/append and create/delete. Each run is repeated five times on the same filesystem

CHAPTER 4. VIOLIN: A FRAMEWORK FOR EXTENSIBLE BLOCK-LEVEL STORAGE 90

to account for filesystem staleness and the results are averaged over the five runs. During each run there

are over 2500 files created, about 8.5GBytes of data read and more than 15GBytes of data written.

Violin Disk

System Disk

Vl. Aggr+Part

LVM
Violin RAID-0

M
D RAID-0

Violin RAID-1

M
D RAID-1

0

500

1000

T
ot

al
 r

un
 ti

m
e

(s
ec

on
ds

)

Figure 4.15: PostMark results: Total runtime

Violin Disk

System Disk

Vl. Aggr+Part

LVM
Violin RAID-0

M
D RAID-0

Violin RAID-1

M
D RAID-1

0

10

20

30

M
B

yt
es

 r
ea

d
pe

r
se

co
nd

Figure 4.16: PostMark results: Read throughput

Figures 4.15, 4.16 and 4.17 show our PostMark results. In each graph and configuration, the light

bars depict the kernel device driver measurements, while the darker bars show the numbers for Violin

modules. The bars have been grouped according to each system configuration and PostMark experiment.

In all cases, except RAID-1, there is a small difference, less than 10% between the two systems, Linux

CHAPTER 4. VIOLIN: A FRAMEWORK FOR EXTENSIBLE BLOCK-LEVEL STORAGE 91

Violin Disk

System Disk

Vl. Aggr+Part

LVM
Violin RAID-0

M
D RAID-0

Violin RAID-1

M
D RAID-1

0

10

20

30

M
B

yt
es

 w
ri

tt
en

 p
er

 s
ec

on
d

Violin
System

Figure 4.17: PostMark results: Write throughput

driver vs. Violin module. In the RAID-1 case there is a large difference of about 30%, due again to the

better buffer-cache management that MD has. As mentioned before, we are currently improving this

aspect of Violin’s driver.

4.4.4 Hierarchy Performance

Finally, for the hierarchy of Figure 4.10, we evaluate with Iometer the performance of the hierarchy

as each module is introduced. Our goal is to provide some intuition on expected system performance

with complex configurations. Figures 4.18 and 4.18 show the results for sequential (left) and random

(right) workloads. Each curve corresponds to a different configuration as each module is introduced to

the hierarchy. In the sequential workloads, we note that variations in performance occur depending on

the functionality of the layers being introduced. We see a large performance reduction in the versioning

module, which is due to the disk layout that this module alters, as discussed in Chapter 3. Encryption

overhead on the other hand, appears to be about 10-15%. In random workloads we observe that the

hierarchy performance is influenced only by the versioning layer functionality, which can increase per-

formance substantially. This happens because of the change in the disk layout that versioning incurs,

through write request logging, as shown also in Clotho’s results (Section 3.4). Encryption or RAID-0,

on the other hand, do not seem to influence performance for random I/O.

CHAPTER 4. VIOLIN: A FRAMEWORK FOR EXTENSIBLE BLOCK-LEVEL STORAGE 92

512B

 1K
B

 2K
B

 4K
B

 8K
B

16K
B

32K
B

64K
B

Block size

0

10

20

30

40

50

60

70

80

M
B

yt
es

 /
se

c

Workload: 100% Sequential Read

Partition
Partition + RAID-0
Partition + RAID-0 + Version.
Partition + RAID-0 + Version. + Blowfish

512B

 1K
B

 2K
B

 4K
B

 8K
B

16K
B

32K
B

64K
B

Block size

0

1

2

3

4

5

6

M
B

yt
es

 /
se

c

Workload: 100% Random Read

512B

 1K
B

 2K
B

 4K
B

 8K
B

16K
B

32K
B

64K
B

Block size

0

10

20

30

40

50

60

70

80

M
B

yt
es

 /
se

c

Workload: 100% Sequential Write

Partition
Partition + RAID-0
Partition + RAID-0 + Version.
Partition + RAID-0 + Version. + Blowfish

512B

 1K
B

 2K
B

 4K
B

 8K
B

16K
B

32K
B

64K
B

Block size

0

1

2

3

4

5

6

M
B

yt
es

 /
se

c

Workload: 100% Random Write

Figure 4.18: IOmeter throughput (read and write) for hierarchy configuration as layers are added.

CHAPTER 4. VIOLIN: A FRAMEWORK FOR EXTENSIBLE BLOCK-LEVEL STORAGE 93

512B

 1K
B

 2K
B

 4K
B

 8K
B

16K
B

32K
B

64K
B

Block size

0

10

20

30

40

50

60

70

80
M

B
yt

es
 /

se
c

Workload: 70% Read - 30% Write Sequential

Partition
Partition + RAID-0
Partition + RAID-0 + Version.
Partition + RAID-0 + Version. + Blowfish

512B

 1K
B

 2K
B

 4K
B

 8K
B

16K
B

32K
B

64K
B

Block size

0

1

2

3

4

5

6

M
B

yt
es

 /
se

c

Workload: 70% Read - 30% Write Random

Figure 4.19: IOmeter throughput (70% read and 30% write mix) for hierarchy configuration as layers

are added.

4.5 Limitations and Future work

Overall, Violin offers a highly configurable environment to easily experiment with advanced storage

functionality. One drawback of our work is that we have evaluated Violin with a specific set of modules.

However, we believe that this set is broad enough to demonstrate the benefits of our approach. Further

extensions to Violin are possible as we gain more experience with its strengths and limitations.

A current limitation of Violin is that it does not support “upcalls”, or calls from a lower layer in

the hierarchy to a higher. This stems from the traditional I/O stack and the block-level API, where

control and initiation of requests proceeds in a downward fashion. That is, the application and/or the file

system initiate I/O commands and query or modify the status of the underlying layers. We believe that in

order for the block-level subsystem to implement advanced functionality, a more balanced bi-directional

scheme is necessary. In other words, the block-level subsystem should be able to send commands that

query and/or modify the status of higher layers in the I/O stack, such as the file system.

Also, this work is focused on examining mechanisms, rather than policies for building virtual I/O

hierarchies. Since we can extend the I/O hierarchy with a rich set of mechanisms, it is important to

examine how user requirements can be mapped to these mechanisms automatically [Keeton and Wilkes,

CHAPTER 4. VIOLIN: A FRAMEWORK FOR EXTENSIBLE BLOCK-LEVEL STORAGE 94

2003]. An interesting aspect on this research direction is to answer the question of how much a system

can do in terms of optimizations in this translation process, both statically when the virtual I/O hierarchy

is built [Wilkes, 2001], but mostly dynamically during system operation.

Finally, it is interesting to examine how Violin can be extended to include the network path in virtual

hierarchies. Networked storage systems offer the opportunity to distribute the virtual I/O hierarchy

throughout the path from the application to the disk. We explore this topic in the next chapter along

with the various possibilities and trade-offs in order to provide insight on how virtualization functionality

should be split among components in storage systems.

4.6 Conclusions

In this chapter we design, implement, and evaluate Violin, a virtualization framework for block-level

disk storage. Violin allows easy extensions to the block I/O hierarchy with new mechanisms and flexible

combining of these mechanisms to create modular hierarchies with rich semantics.

To demonstrate its effectiveness we implement Violin within the Linux operating system and provide

several I/O modules. We find that Violin significantly reduces implementation effort. For instance, in

cases where user-level library code is available, new Violin modules can be implemented within a few

hours. Using a simple user-level tool we create I/O hierarchies that combine the functionality of various

modules and provide a set of features difficult to offer with monolithic block-level drivers. Finally, we

use two benchmarks to examine the performance overhead of Violin over traditional, monolithic drivers

and driver-based hierarchies, and find that Violin modules and hierarchies perform within 10% of their

counterparts.

Overall, we find that our approach provides adequate support for embedding powerful mechanisms

in the storage I/O stack with manageable effort and small performance overhead. We believe that Violin

is a concrete step towards supporting advanced storage virtualization, reducing storage management

overheads and complexity, and building self-managed storage systems.

Chapter 5

Orchestra: Extensible Block-level Support

for Resource and Data Sharing in

Networked Storage Systems

A man who wants to lead the orchestra must turn his back on the crowd.

—Max Lucado

The content of this chapter roughly corresponds to publication [Flouris et al., 2008].

5.1 Introduction

Sharing in a storage system refers usually to two distinct aspects of the system: (i) physical resources and

(ii) access to data. Traditionally both of these functions have been supported by the file-system, which

has been responsible for pooling the available resources (mainly disks in a directly-attached storage

system) and coordinating read/write access to stored data. Over time, sharing of physical resources has

been increasingly supported by adding management and configuration flexibility at the block-level. To-

day’s storage area networks allow multiple hosts to share physical resources by placing multiple virtual

disks over a single pool of physical disks. However, current levels of resource sharing incur significant

limitations; For instance, logical volumes in a Fibre-Channel storage system should not span multi-

ple storage controllers. Besides, distinct application domains have very diverse storage requirements;

Systems designed for the needs of scientific computations, data mining, e-mail serving, e-commerce,

95

CHAPTER 5. ORCHESTRA: EXTENSIBLE, SHARED NETWORKED STORAGE 96

operating system (OS) image serving or data archival impose different trade-offs for a storage system

in terms of dimensions such as speed, reliability, capacity, availability, security, and consistency. Yet,

current block-level systems provide only a limited set of functions, for instance they rarely support

versioning or space saving techniques.

In terms of data sharing, e.g. concurrently accessing data in a single logical disk from many ap-

plication clients, storage systems employ a (distributed) file-system to coordinate data accesses. Such

systems require mechanisms for distributed coordination, allocation, and metadata consistency, which

have proved extremely challenging to scale at the file-system level.

Finally, combining mechanisms for resource and data sharing in the file-system results in unman-

ageable storage systems that are both hard to tailor to application needs as well as to scale. Thus,

although this emerging, decentralized cluster architecture for networked storage offers a lot of poten-

tial for improving scalability and reducing cost, it needs to support efficiently both resource and data

sharing.

In this chapter, we present Orchestra, a low-level software framework that extends Violin, presented

in the previous chapter, and supports resource and data sharing at the block level in a decentralized

storage cluster. Our main goal is to ease of development, deployment, and adaptation of block-level

networked-storage services for various environments and application needs. Orchestra treats data and

control requests in a uniform manner, propagating all I/O requests through the same I/O path from

the application to the physical disks. Thus, it essentially eliminates out-of-band services, such as lock

servers and block allocation that complicate the design of distributed (clustered) storage systems. We

show that providing flexibility does not introduce significant overheads and does not limit scalability.

Moreover, our propositions can adapt to high requirements in terms of important concerns such as relia-

bility (fault tolerance, data integrity), which is explored in the next chapter and manageability (dynamic

reconfiguration, automatic tuning) which is outside of the scope of the present thesis.

The main contributions of work presented in this chapter can be summarized as follows:

• We provide a novel approach for building cluster storage systems which consolidates system com-

plexity in a single point, the Orchestra hierarchies. We examine how extensible, block-level I/O

paths can be supported over distributed storage systems. Our proposed infrastructure deals with

metadata persistence and allows for hierarchies to be distributed almost arbitrarily over applica-

tion and storage nodes, providing a lot of flexibility in the mapping of system functionality to

available resources.

CHAPTER 5. ORCHESTRA: EXTENSIBLE, SHARED NETWORKED STORAGE 97

• We examine how sharing can be provided at the block level. We design block-level locking

and allocation facilities that can be inserted in distributed I/O hierarchies where required. A

distinguishing feature of our approach is that allocation and locking are both provided as in-

band mechanisms, i.e. they are part of the I/O stack and are not provided as external services.

We believe that our approach simplifies the overall design of a storage system and leaves more

flexibility for determining the most adequate hardware/software boundary. Moreover, using in-

band control operations takes advantage of available support for scaling regular data requests. Our

current prototype provides simple but scalable policies for locking and allocation. More involved

policies can be implemented through additional modules.

• We examine how higher system layers can benefit from an enhanced block interface. Orchestra’s

support for block locking, allocation, and metadata persistence can significantly simplify filesys-

tem design. We design and implement a stateless, pass-through filesystem (ZeroFS or 0FS), that

takes advantage of Orchestra’s advanced features and distributed virtualization mechanisms. In

particular, this filesystem provides basic file and directory semantics and I/O operations, while

it does not maintain any internal distributed state and does not require explicit communication

among its instances.

To demonstrate our approach, we implement Orchestra as a block device driver under Linux and

ZeroFS as a user-level library. We perform experiments with a cluster of 16 nodes (8 storage and 8

application nodes) interconnected with Gigabit Ethernet. We evaluate the effectiveness of our approach

by examining the overheads introduced by the block level extensions for locking and block allocation,

the overheads associating with providing a stateless file system, and the scalability of the system at both

the block and filesystem level.

The rest of the chapter is organized as follows. Section 5.2 presents the design of Orchestra, empha-

sizing its main contributions, whereas Section 5.3 discusses our prototype implementation. Section 5.4

presents our results. Section 5.5 discusses limitations and future work and Section 5.6 draws our con-

clusions.

5.2 System Design

Orchestra aims at providing the underlying infrastructure for building scalable and extensible storage

systems to support a wide range of application needs in a cost-effective manner.

CHAPTER 5. ORCHESTRA: EXTENSIBLE, SHARED NETWORKED STORAGE 98

Orchestra is designed around three goals:

• Distributed virtual hierarchies: Orchestra uses the concept of distributed virtual hierarchies to

allow storage systems to extend the functions they support and to provide different views and

semantics to applications without compromising scalability. New virtual modules may be used to

provide novel storage functions while maintaining the illusion of a single data store to the upper

layers (filesystem and applications). This requires “splitting” hierarchies over the network in a

transparent manner, and in particular, transferring control requests among nodes.

• Distributed block-level sharing: Orchestra allows applications to share its virtual devices. To

facilitate sharing Orchestra incorporates block-level locking and allocation mechanisms that are

implemented as virtual modules. Essentially, this makes locking and allocation in-band opera-

tions, eliminating out-of-band services that are usually used in cluster storage systems (e.g. Petal,

FAB). The locking mechanism is integrated in the virtual hierarchies as an optional virtual module

and may be used by Orchestra devices to lock shared metadata or by applications that share data

at the block-level. The block allocator performs distributed free-block management and is also

built as an optional virtual device that may be inserted at appropriate places in a virtual hierarchy.

• Distributed file-level sharing: To support seamless, coherent sharing for distributed, file-based

applications, Orchestra provides a simple user-level library, ZeroFS (0FS) that implements a con-

ventional filesystem API. Since Orchestra already includes advanced functions, 0FS is essentially

a stateless, pass-through filesystem that translates application calls to the underlying block-level

operations.

Orchestra allows users to create distributed hierarchies that span application and storage nodes,

based on application and system requirements. A sample distributed Orchestra hierarchy is shown in

Figure 5.1. Next, we discuss each of the above issues in more detail.

5.2.1 Distributed Virtual Hierarchies

Orchestra builds on Violin, presented in Chapter 4. Violin is a framework developed for single node stor-

age virtualization, and provides all the mechanisms required to support distributed and shared storage

systems. Next we discuss the extensions to Violin developed in the context of Orchestra.

CHAPTER 5. ORCHESTRA: EXTENSIBLE, SHARED NETWORKED STORAGE 99

������ ����

������������������������

S
T

O
R

A
G

E
 N

O
D

E
 N

����������

S
T

O
R

A
G

E
 N

O
D

E
 2

S
T

O
R

A
G

E
 N

O
D

E
 1

Network Channels

...

N
O

D
E

 X

����

A
P

P
LI

C
A

T
IO

N

LOCK LOCK

RAID 0

VERSION PART PART

LOCK

DiskDiskDiskDiskDisk

MIGR

BLOWFISH

LOCK

VirtualVirtualVirtual

ALLOC ALLOC

RAID 0

Hierarchy A

Imported / Exported
Devices:

Distributed

Disk Disk Disk

BLOWFISH

VERSION

Figure 5.1: A distributed Orchestra hierarchy.

����
����
����
����Dev II

0 mc d

����
����
����

����
����
����

0 e f

Dev X

k

���
���
���

���
���
���

0 g h
Dev Y

l

����
����
����

����
����
����

dev_ii.mapping_handler()

dev_i.mapping_handler()
Total Capacity

Dev I
0 n

Block Range
a b

Figure 5.2: Byte-range mapping process through a hierarchy.

In-band control and data requests

As mentioned earlier, Violin supports control and data I/O requests in the same manner, by using the

same in-band mechanism for data and control propagation in virtual hierarchies. An issue with both data

and control requests that traverse virtual hierarchies is related to how we treat block address arguments.

Each layer is able to “see” and thus, reference only the block addresses of its underlying layers. Thus,

as control requests propagate in the virtual hierarchy the addresses of the blocks they reference, need to

be translated similar to I/O requests.

We have generalized this concept in Orchestra by allowing layers to provide address-mapped control

requests (commands) in addition to existing regular control requests. All control requests may be issued

by any virtual layer and traverse the virtual hierarchy top to bottom. If a layer does not understand a

specific control request it forwards it to its lower layers. Eventually, a control command reaches a layer

that handles it, possibly generating or responding to other control and data requests. Control requests

provided by individual layers in Orchestra hierarchies are automatically inherited by all higher layers in

CHAPTER 5. ORCHESTRA: EXTENSIBLE, SHARED NETWORKED STORAGE 100

the hierarchy. When a control request is issued, it is either handled by the current layer in the hierarchy

or automatically forwarded to the next layer(s).

In addition, address-mapped commands are subject to translation of arguments that represent byte-

ranges. This is achieved by augmenting each layer, i.e., extending the layer API, with an address-

mapping API call, address map(). This call is written by module developers for every module that is

loaded in an Orchestra hierarchy and translates an input byte-range to any output byte-range(s) in one

or more output devices as shown in Figure 5.2.

Block mapping depends on the functionality of individual modules. Although complex mappings

are possible, in many cases, mappings are simple functions. Implementing the address-mapping method

is a straightforward task for the module developer, since this is usually identical to the mappings used

for read and write I/O calls through the layer to the output devices.

Finally, to allow virtual hierarchies to span multiple nodes, Orchestra needs to transfer I/O requests

between virtual modules that execute on different nodes. For this purpose, we currently use a simple

network protocol over TCP/IP that implements a network block device that is able to handle both data

read-write requests as well as control requests between system nodes.

5.2.2 Distributed Block-level Sharing

Sharing virtual volumes requires coordinating (i) accesses to data and, as mentioned above, metadata via

mutual exclusion and (ii) allocation and deallocation of storage space. In Orchestra, concurrent accesses

to the data are coordinated by means of a locking virtual module, whereas space allocation is managed

by a distributed block allocation facility.

Byte-range locking

As mentioned, Orchestra provides support for byte-range locking over a distributed block volume. The

main metadata in the locking layer is a a free-list that contains the unlocked ranges of the managed

virtual volume. When a lock control request arrives, the locking layer uses its internal metadata to

either complete or block the request. At an unlock request the locking layer updates its metadata and

possibly unblocks and completes a previous pending lock request. Our locking API currently supports

locks in both blocking and non-blocking (i.e. trylock) modes.

Support for byte ranges, instead of block ranges, is provided to facilitate the implementation of

multiple-readers, single-writer locks at the filesystem (e.g. 0FS) or application level. A simple algo-

CHAPTER 5. ORCHESTRA: EXTENSIBLE, SHARED NETWORKED STORAGE 101

rithm to implement such file locks, used currently by the 0FS filesystem is as follows: to lock a file in

multiple-reader mode, 0FS locks just one byte in the inode block address range for each reader. This

allows as many concurrent readers, as the number of bytes in the file inode, which is currently 4096.

In the case of a writer the filesystem locks the whole inode block address range, thus gaining exclusive

access to the file.

Lock and unlock requests are address-mapped commands, which allows us to distribute the locking

layers to any desirable serialization point in a distributed hierarchy. However, to achieve mutual exclu-

sion, locks for a specific range of bytes should be exclusively serviced by a single locking virtual layer.

This is achieved by placing locking layers at specific points in the distributed hierarchy, where they

can intercept all I/O requests for a part of the storage address space. Such points include for example

places where a local device is exported from a storage node, as shown in Figures 5.4 and 5.5. A locking

device in this case allows locking support for any remote layer using this exported device. The lock and

unlock commands are forwarded to the specific node through Orchestra’s communication mechanism

and the associated addresses are mapped according to the distributed hierarchy mappings. Additionally,

partitioning the locking address space and allowing many locking layers to service separate byte ranges

in parallel, achieves locking parallelization and load balancing across multiple nodes. Furthermore, the

locking service scales as more storage nodes are added.

Note that the metadata of a locking layer does not need to be persistent. Instead, a lease-based

mechanism to reclaim locks from a failed client is adequate. Finally, lock availability can be achieved

through mere replication of storage nodes, in the same way that one would configure a storage hierarchy

for increased data availability.

Block allocation

The role of Orchestra’s block allocator is to handle distributed block management in a consistent man-

ner for clients sharing the same block volume. The allocator distributes free blocks to the clients and

maintains a consistent view of used and free blocks. All such block-liveness information is maintained

by the allocator, offloading all the potentially complex free-block handling code from higher system and

application layers.

In addition, providing a space allocation mechanism at the block level allows Orchestra to handle

(dynamic) reconfiguration in an easy way: the allocation policy and size of a volume can be modi-

fied transparently to higher layers. Besides, the allocator’s block-liveness state can be used to make

CHAPTER 5. ORCHESTRA: EXTENSIBLE, SHARED NETWORKED STORAGE 102

��
��
��

��
��
��

...Z2Z1Z0

0 Total Volume Capacity n

Zx

Metadata Storage (reserved by framework)

Zone Capacities

Figure 5.3: View of the allocator layer’s capacity.

necessary management tasks, such as backup and migration, more (time- and space-) efficient.

The allocator metadata for managing free blocks consist of free-lists and bitmaps to handle blocks

of various sizes. The allocator uses a free-list for keeping track of large blocks and bitmaps for small

blocks. Currently, the allocator is configured to use two block sizes, a large block size (4 KBytes)

for data and a small block size (256 Bytes) for filesystem i-nodes. However, we envision that future

versions of Orchestra may rely on a single block size using the notion of “stuffed i-nodes” [Mullender

and Tanenbaum, 1984].

The allocator metadata need to be maintained consistent across allocator instances running in dif-

ferent nodes. This is achieved by using the persistent metadata locking primitives to synchronize access

to the shared free-list and bitmaps. Frequent locking at fine granularity will result in high allocation

overheads. To address this issue we amortize the overhead associated with locking metadata by dividing

the available (block) address space of a shared volume in a sufficiently large number of allocation zones

as shown in Figure 5.3. Each zone is independent and has its own metadata, which can be locked and

cached in the node using this particular zone.

The locking algorithm works as follows. When the first allocation request for a free block arrives,

the allocator identifies an unused (and unlocked) zone in the shared device and locks the zone. When

a module successfully locks a zone, it loads the zone’s metadata in memory. Subsequent allocation

requests will use the same zone, as long as there are available free blocks, thus, avoiding locking over-

heads. When a zone does not have enough free blocks to satisfy a request, a new zone is allocated and

locked. This scheme essentially increases the locking granularity to full zones. The metadata of locked

zones are automatically synchronized to stable storage, similarly to all other module metadata in Violin,

in two occasions: (i) periodically every few seconds and (ii) when a zone is unlocked and its metadata

released from the cache.

Locking full zones of free blocks for allocation purposes results in internal fragmentation. We expect

that in future storage systems with large amounts of physical disk space this will not be an important

CHAPTER 5. ORCHESTRA: EXTENSIBLE, SHARED NETWORKED STORAGE 103

issue. To minimize internal fragmentation there is a need to select carefully the number of zones in a

shared volume. Using a large number of zones may reduce internal fragmentation but increase locking

frequency (and thus allocation) overhead, whereas a small number of larger zones may have the opposite

effect. We believe that the number of zones for a volume should be calculated according to the expected

number of users of a shared volume and we intend to determine acceptable ratios through experiments

with realistic workloads.

Freeing blocks can be more complex than block allocation. If the blocks to be freed are in a locally

locked zone, the module will free the blocks in the local metadata maps. If, however, the block belongs

to a zone not locally locked, the module will first attempt to lock the corresponding zone in order to

free the blocks. If it is successful, it will free the blocks and will keep the zone locked for a short

time to avoid the locking penalty of successive free operations. Even though this case may incur high

overhead, we expect that block deallocation will be clustered in zones due to the allocation policy and

the (expected) large zone sizes, thus, minimizing deallocation overheads.

If, during free operations, the allocator fails to lock a specific zone, it uses small logs for deferred

free operations, called defer logs. The defer log for a zone is a persistent metadata object. When an

allocator cannot lock a zone for deallocation purposes, it locks the zone’s defer log, appends the pending

free operation, and releases the defer log lock in case other allocator modules run into the same situation.

If the defer log is full or already locked, the allocator module waits until the log is emptied or unlocked.

The responsibility for processing the defer log lies upon the allocator that has locked the corresponding

zone. Every allocator module that owns a lock on a zone, periodically checks the defer log for pending

deallocation requests. If there are any pending operations in the log, they are performed on the locked

metadata and the defer log is emptied.

An mentioned in Section 2.3, our design of the block allocator bears similarity with Hoard [Berger

et al., 2000], a scalable memory allocator for multi-threaded applications.

5.2.3 Distributed File-level Sharing

Many applications access storage through a filesystem interface. To allow such applications to take

advantage of the advanced features of Orchestra and to demonstrate the effectiveness of our volume

sharing mechanisms there is a need to provide a filesystem interface on top of Orchestra.

One approach to achieve this is to use an existing distributed file system. Depending on the require-

ments of the distributed filesystem, Orchestra can be used to either provide a number of virtual volumes

CHAPTER 5. ORCHESTRA: EXTENSIBLE, SHARED NETWORKED STORAGE 104

each residing in a single storage node [Preslan et al., 1999], or a single distributed virtual volume built

out of multiple storage nodes [Thekkath et al., 1997]. However, existing filesystems in either case would

not take advantage of distributed block allocation and locking primitives provided by Orchestra at the

block-level.

For these reasons, we provide our own filesystem on top of Orchestra, using a user-level library

that provides the basic filesystem functions, such as file and directory naming, as well as standard file

I/O operations1. 0FS is a stateless, pass-through file system that translates file calls to the underlying

Orchestra block device. Our approach demonstrates also that by extending the block layer we are able to

significantly simplify filesystem design in distributed environments and especially when it is necessary

to support system extensibility. Thus, the block allocator uses the block volume facilities for free-list

allocation and locking.

The main feature of ZeroFS is that, unlike distributed file systems, it does not require explicit com-

munication between separate instances running on different application nodes. Usually, communication

is required for two purposes: (i) mutual exclusion and (ii) metadata consistency. 0FS uses the corre-

sponding block-level mechanisms provided by Orchestra volumes for these purposes:

• Mutual exclusion: 0FS uses the byte range locking mechanism provided by Orchestra to achieve

mutual exclusion between multiple applications accessing a single filesystem through one or more

application nodes. 0FS implements multiple-reader, single-writer file locks as described in Sec-

tion 5.2.2. Currently, 0FS locks and unlocks files during the open / close calls, which is

coarser than locks on read/write operations, but realistic enough for many applications. Support

for locking on reads/writes, is nonetheless important for clustered applications that heavily rely

on shared files. We expect to introduce these features in a future version without significant effort.

• Metadata consistency: The only metadata required by 0FS are i-nodes and the directory struc-

ture. To avoid maintaining internal consistent state in memory, 0FS does not perform any caching

of metadata or data but uses the underlying 0FS block device. Thus, accesses to files or direc-

tories in 0FS may result in multiple reads to the underlying block device for the corresponding

i-nodes and directory blocks. In the worst case, four read requests may be necessary for very large

files.

1Most of the conventional filesystem operations are supported, such as open(), close(), remove(), creat(), read(), write(),
stat(), rename(), mkdir(), rmdir(), opendir(), readdir(), chdir(), getcwd(), etc.

CHAPTER 5. ORCHESTRA: EXTENSIBLE, SHARED NETWORKED STORAGE 105

...

...
...

Distributed Shared
Virtual VolumeStorage Nodes

Block Allocator

Filesystem

App. Server X App. Server Y

Filesystem

Block Allocator

Storage Node NStorage Node 2Storage Node 1

RAID−0 RAID−0 RAID−0

LockingLockingLocking

Mapped to many

Figure 5.4: The allocator and locking layers allow many FS clients to share a distributed volume mapped

on many nodes.

Figure 5.4 shows how 0FS is combined with Orchestra to provide file-level sharing over distributed

Orchestra volumes.

5.2.4 Differences of Orchestra vs. Violin

Violin, presented in Chapter 4, and Orchestra presented in this chapter are both virtualization frame-

works and thus share basic virtualization principles, such as easily extensible hierarchies made of virtual

devices. However, there are significant differences between the two systems, the most important being

that Violin offers single-node virtualization, while Orchestra is a distributed virtualization framework

for a cluster.

In terms of design/implementation, the major differences of Orchestra and Violin are: (i) The net-

working layer that allows hierarchy distribution in the cluster. (ii) Extensions to command API for prop-

agating commands across nodes and manipulating control and configuration information. (iii) Support

of block-level locking and allocation in distributed configurations, which is essential for sharing vol-

umes between many clients. (iv) Design, implementation, and evaluation of a stateless filesystem (0FS)

built on top of distributed Orchestra hierarchies using block-level locking and allocation facilities. To

our knowledge, Orchestra is the only existing system that decouples free-block allocation and locking

from the distributed filesystem and integrates them as independent components in the block-level I/O

CHAPTER 5. ORCHESTRA: EXTENSIBLE, SHARED NETWORKED STORAGE 106

stack for improving scalability.

5.3 System Implementation

Orchestra is implemented as a loadable block device driver module in the Linux 2.6 kernel, extending

Violin’s device driver presented in Chapter 4. User-level tools can be used online, during system opera-

tion to create new or modify existing I/O hierarchies. However, the user is responsible for maintaining

data consistency while modifying the structure of virtual hierarchies. The user-level tools communicate

with the framework device driver through the kernel’s ioctl() interface.

Virtual I/O layers are implemented as separate kernel modules that are loaded on demand. Upon

loading, Orchestra layers register their presence to the Orchestra framework driver. These modules are

not “classical” device drivers themselves, but rather use the framework’s programming API, which ex-

tends Violin’s API. Modules implemented for Violin, such as RAID 0 and RAID 1 (including recovery),

versioning, device partitioning, device aggregation, DES and triple-DES encryption, and on-line data

migration between devices have been ported to Orchestra. New modules, such as the block allocator,

byte range locking and I/O request tracing have also been implemented.

The networking channels for exporting Orchestra devices to other storage nodes or clients are cur-

rently implemented over TCP/IP in the core Orchestra framework. The networking component imple-

ments the client and server kernel threads and the request queues needed for the networking channels,

as well as the Orchestra commands to connect and disconnect remote devices from the local Orchestra

stack.

When a virtual I/O hierarchy is configured in the framework and linked with a /dev device, it can be

manipulated as a normal block device with existing tools. For instance, the user can build a file system

on top of it with mkfs and then mount it as a regular single-node filesystem or share it through 0FS.

ZeroFS is currently implemented as a user-level library that may be linked with any application

during execution. We chose to implement 0FS at user-level to reduce the development effort as well

as to allow for easy customization. 0FS currently supports most of the conventional filesystem opera-

tions, such as open, close, remove, creat, read, write, stat, rename, mkdir, rmdir, opendir, readdir, chdir,

getcwd. It does not support the full functionality of a kernel-level filesystem, such as fcntl, file permis-

sion and attribute operations, and memory-mapped files. We were, however, able to compile and run

standard filesystem benchmarks, such as IOzone and PostMark without any code modifications.

CHAPTER 5. ORCHESTRA: EXTENSIBLE, SHARED NETWORKED STORAGE 107

Kernel Component # code lines

Orchestra Core Framework 19558

RAID (0,1 levels) 950

Partition & Aggregation 1546

Versioning (Clotho) 800

DES & 3DES Encryption 1550

Blowfish Encryption 791

Migration 442

Networking 3033

Byte-range Locking 1137

Block Allocator 2479

Kernel Code (approx.) 32300

0FS (user-space) 7600

Orchestra Total (approx.) 40000

Table 5.1: Orchestra modules in kernel and user-space code lines.

Table 5.1 shows the size of the code for Orchestra. The current version, as used in our experiments,

is about 40000 lines of code.

Finally, the current Orchestra implementation uses a number of kernel threads mainly for network

channels between devices: (a) One thread that listens, authenticates and accepts new connections from

remote Orchestra hierarchies. This thread also creates the threads needed for a new remote device

connection. (b) A client request sender thread that removes I/O requests or control command requests

from a FIFO queue and sends them to the appropriate server. (c) A server request receiver that receives

requests from all client connections. (d) A server response sender thread that sends responses when the

I/O requests or I/O control commands are done. (e) A client request receiver thread that receives server

responses and sends call-backs to the waiting application(s).

Our lock module provides a simple API that allows locking block ranges. Both the allocator and

lock components are implemented as virtual modules.

The commands currently supported by the allocator layer are:

• get block size(): returns the large block size.

CHAPTER 5. ORCHESTRA: EXTENSIBLE, SHARED NETWORKED STORAGE 108

• get small block size(): returns the small block size.

• allocate blocks(): returns the requested number of sequential blocks allocated, either large

or small blocks.

• free blocks(): frees the requested number of sequential blocks, either large or small blocks.

5.4 Experimental Results

In this section we present preliminary results on the overhead of basic operations in Orchestra and we

examine the scalability of Orchestra and 0FS on a setup with multiple storage and application nodes.

Our evaluation platform is a 16-node cluster of commodity x86-based Linux systems. All the cluster

nodes are equipped with dual AMD Opteron 242 CPUs and 1 GByte of RAM, while storage nodes have

four 80GB Western Digital SATA Disks. All nodes are connected with a 1 Gbit/s (Broadcom Tigon3

NIC) Ethernet network through a single 48-port GigE switch (D-Link DGS-1024T). All systems run

Fedora Core 3 Linux with the 2.6.12 kernel.

We use three I/O benchmarks: xdd [Xdd], IOzone [Norcott and Capps] and PostMark [Katcher].

We use PostMark and IOzone to examine the basic overheads in 0FS, and xdd on raw block devices to

examine block I/O overheads.

xdd [Xdd] generates I/O workloads based on specified parameters, such as read/write mix, request

size, access pattern, number of outstanding I/Os. We vary three parameters in our workloads: (i) Number

of outstanding I/Os: This is equivalent to specifying the maximum queue depth in the I/O path. In our

experiments, we vary the queue depth from 1 to 32 I/Os. (ii) Read-to-write ratio: We use 100% reads

and 100% writes, and a mix of 70% reads–30% writes. (iii) Block size: we use block sizes ranging from

4 KBytes to 1 MByte. In all cases, we run xdd on a 8 GByte file (8 times the RAM of the nodes) and we

report numbers averaged over multiple runs for each block size. All runs for a specific device are run in

sequence and the total running time for all block sizes and workloads is approximately 4 hours.

IOzone is a filesystem benchmark tool that generates and measures a variety of file operations. We

use IOzone version 3.233 to study file I/O performance for the following workloads: Read, write, re-

read, and re-write. We vary block size between 64 KBytes and 8 Mbytes and we use a file-size of 2

GBytes for each client.

PostMark [Katcher] is a synthetic filesystem benchmark that measures the transaction rate for a

CHAPTER 5. ORCHESTRA: EXTENSIBLE, SHARED NETWORKED STORAGE 109

... ...

...

...
...

...
...

Setup C: 8 App. Nodes − 8 Stor. Nodes

Storage Node 4Storage Node 3Storage Node 2Storage Node 1

RAID−0RAID−0 RAID−0

App. Node 3App. Node 1

Filesystem Filesystem Filesystem

Block AllocatorBlock AllocatorBlock AllocatorBlock Allocator

FilesystemFilesystem

Block Allocator

Locking

Setup A: 1 App. Node − 1 Stor. Node

LockingLockingLocking

RAID−0

Locking

RAID−0 RAID−0 RAID−0 RAID−0

App. Node 4App. Node 2

Storage Node 1

App. Node 1

RAID−0

RAID−0

Setup B: 4 App. Nodes − 4 Stor. Nodes

Figure 5.5: Configuration for multiple node experiments.

workload simulating a large Internet electronic mail server. PostMark’s operation is described in detail

in Section 4.4.3.

In our evaluation we examine basic overheads and scalability of Orchestra and 0FS. We present

three setups, where we vary the total number of nodes between 2, 8, and 16. To facilitate interpretation

of results, we use the same number of storage and application nodes, resulting in three configurations:

1x1, 4x4, and 8x8 (Figure 5.5).

5.4.1 Orchestra

In this subsection we examine the overheads associated with Orchestra in single- and multi-node setups.

Basic costs

We measure the cost of individual operations in a local and a distributed virtual hierarchy (volume).

Table 5.2 summarizes our results. Values are averaged over one thousand calls. We see that a local

null ioctl costs about 4 µs. Allocating and freeing blocks through a local allocator virtual module costs

about 12 and 13 µs respectively. This cost does not include saving the allocator metadata to disk, which

is performed periodically (every 10 seconds) in the background. In the distributed volume case, there

is an additional 310 µs overhead, that includes mainly the network delay and remote CPU interrupt

CHAPTER 5. ORCHESTRA: EXTENSIBLE, SHARED NETWORKED STORAGE 110

NULL Allocate Free Lock Unlock

Local Ioctls 4 12 13 14 15

Remote Ioctls 295 - - 310 317

Table 5.2: Measurements of individual control operations. Numbers are in µsec.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 512 256 128 64 32 16 8 4 2 1

T
hr

ou
gh

pu
t (

M
B

it
/s

ec
)

Buffer Size (KBytes)

TTCP Network Throughput (TCP Protocol)

TCP Throughput

(a) Throughput

 0

 2

 4

 6

 8

 10

 12

 1024 512 256 128 64 32 16 8 4 2 1
L

at
en

cy
 p

er
 b

uf
fe

r
(m

il
li

se
co

nd
s)

Buffer Size (KBytes)

TTCP Network Latency (TCP Protocol)

Sender TCP Latency
Receiver TCP Latency

(b) Latency

Figure 5.6: TCP/IP network throughput and latency measured with TTCP.

and thread scheduling costs. Overall, we notice that the main overhead in networked volumes comes

from the communication subsystem, which is expected to improve dramatically in storage systems with

current developments in system area interconnects, such as PCI Express/AS and 10 Gigabit Ethernet.

Figure 5.6 shows the throughput and latency between two system nodes as reported by the TTCP

benchmark. We see that the maximum throughput achieved between two nodes in our system is about

112 MBytes/s (900 Mbits/s), which is the expected value of a commodity gigabit ethernet interconnect.

Figure 5.7 compares the throughput and latency of a simple Orchestra hierarchy of a single RAID0

virtual device on four SATA disks, with a similar hierarchy built with existing Linux drivers (MD)

in a single node. As shown, the throughput obtained for all workloads (sequential and random) over

Orchestra is similar to the throughput of MD. In terms of latency, shown in Figure 5.7(b), Orchestra also

exhibits similar performance to MD.

Scalability

Now we examine the scalability of Orchestra at the block-level using xdd. Figure 5.5 shows the setup

we use for these experiments. Each xdd process runs at different block offsets and thus accesses separate

CHAPTER 5. ORCHESTRA: EXTENSIBLE, SHARED NETWORKED STORAGE 111

 4K
B

 8K
B

16K
B

32K
B

64K
B

128K
B

256K
B

512K
B

1M
B

Block size -- [Sequential I/O]

0

20

40

60

80

100

120

140
M

B
yt

es
 p

er
 s

ec
on

d

XDD Direct Attached: Violin vs. MD

Linux MD-100%-Write
Linux MD-100%-Read
Linux MD-70%Read-30%Write

 4K
B

 8K
B

16K
B

32K
B

64K
B

128K
B

256K
B

512K
B

1M
B

Block size -- [Random I/O]

0

20

40

60

80

100

120

140

M
B

yt
es

 p
er

 s
ec

on
d

Violin-100%-Write
Violin-100%-Read
Violin-70%Read-30%Write

(a) Throughput

 4K
B

 8K
B

16K
B

32K
B

64K
B

128K
B

256K
B

512K
B

1M
B

Block size -- [Sequential I/O]

0

5

10

15

20

L
at

en
cy

 (m
s)

XDD Direct Attached: Violin vs. MD

Linux MD-100%-Write
Linux MD-100%-Read
Linux MD-70%Read-30%Write

 4K
B

 8K
B

16K
B

32K
B

64K
B

128K
B

256K
B

512K
B

1M
B

Block size -- [Random I/O]

0

5

10

15

20

L
at

en
cy

 (m
s)

Violin-100%-Write
Violin-100%-Read
Violin-70%Read-30%Write

(b) Latency

Figure 5.7: Throughput and latency for Orchestra vs. Linux MD over direct-attached disks for sequential

(left) and random (right) workloads.

CHAPTER 5. ORCHESTRA: EXTENSIBLE, SHARED NETWORKED STORAGE 112

block ranges, minimizing caching effects on the storage nodes.

Figure 5.8 shows sequential and random read and write throughput and latencies with xdd for each

configuration: 1x1, 4x4, and 8x8. Overall, we notice that as we increase the number of nodes, both

read and write performance scale. For instance, in the 1x1 setup, maximum throughput is about 100

MBytes/s, while in the 8x8 setup it exceeds 400 MBytes/s. However, scalability is limited by the disks,

because as the number of nodes (and in turn xdd processes) is increased, the efficiency of individual

disks drops, as they perform more seeks between additional separate block ranges. The network, on the

other hand, is not close to saturation, since for instance in the 4x4 setup maximum throughput is about

200 MBytes, whereas total network throughput is at least twice as much.

(a) Sequential I/O

(b) Random I/O

Figure 5.8: Throughput scaling with xdd for the 1x1, 4x4, and 8x8 setups.

CHAPTER 5. ORCHESTRA: EXTENSIBLE, SHARED NETWORKED STORAGE 113

(a) Read / Reread (b) Write / Rewrite

Figure 5.9: Aggregate throughput of 0FS with IOzone.

5.4.2 ZeroFS (0FS)

In this subsection we examine the overheads associated with 0FS using IOzone and PostMark.

First, we look into the base performance of 0FS on a single node. We contrast its behavior to the

standard Linux Ext2FS using both IOzone and PostMark. IOzone results, show similar performance

over reads, while for writes, ext2FS is about 20% faster. In the PostMark experiments and for small

workloads that fit in the buffer cache, 0FS is about 25% slower. We attribute this performance difference

to the increased number of system calls of the user-level 0FS compared to the in-kernel Ext2FS and the

metadata caching that Ext2FS uses. Thus, we see that 0FS performs, in the local case, close to current

filesystems.

Next, we examine the scalability of 0FS in distributed setups. In the base distributed configuration

(1x1) we create a single volume over all available system storage and then create different directories

for every application node that will access this volume. The separate instances of 0FS use the locking,

allocation modules, and RAID0 modules, as shown in Figure 5.5. Each application node uses a separate

directory on the distributed 0FS to perform its file I/O workload either with IOzone or PostMark. In

our opinion this is the most realistic scenario for evaluating the scalability of a distributed FS, since no

system should be expected to scale well when there is heavy sharing of files between clients. Finally,

note that since 0FS is stateless, it does not perform any client-side caching, and thus all I/O requests

generate network traffic. Figures 5.9 and 5.10 show our multi-node results with IOzone and PostMark,

respectively.

CHAPTER 5. ORCHESTRA: EXTENSIBLE, SHARED NETWORKED STORAGE 114

(a) Throughput (MBytes/sec) (b) Transactions / sec

Figure 5.10: PostMark results over 0FS in multiple node setups (1x1, 4x4, 8x8). The workload consists

of: (i) files ranging from 128 KB to 1 MByte in size, (ii) an initial pool of 2000 files, and (iii) 5000 file

transactions with equal biases for read/append and create/delete. During each run there are over 4500

files created, about 1.5 GBytes of data read and more than 3 GBytes of data written by each client.

Figure 5.9 shows that IOzone (over 0FS) scales as the number of nodes increases for both read and

write, reaching a maximum throughput of about 330 MBytes/s in the 8x8 configuration. We also see

that IOzone performance and scaling follows the behavior of block-level I/O (xdd) in Figures 5.8 and

5.8. Similarly to the block-level I/O, scaling from 1x1 to 4x4 to 8x8 nodes is not linear because of

reduced disk efficiency as the number of nodes (and disks increases). Thus, given that disks are not the

bottleneck, 0FS is able to scale well in cases where these is limited contention. Similarly, our PostMark

results (Figure 5.10) show scaling behavior similar to IOzone. We see that quadrupling the number

of storage nodes from 1x1 to 4x4 results in about doubling all metrics, whereas further increasing the

number of storage nodes from 4 to 8 results in doubling performance.

Comparison to other distributed filesystems.

Considering how different our approach is from current distributed storage systems, we believe it is

difficult to make an apple-to-apple comparison with existing, freely-available cluster filesystems such

as the Global File System (GFS) [Preslan et al., 1999] (note that GPFS [Schmuck and Haskin, 2002] is

a commercial closed-source system), since: (i) Cluster filesystems usually rely on hard-wired reliabil-

CHAPTER 5. ORCHESTRA: EXTENSIBLE, SHARED NETWORKED STORAGE 115

ity mechanisms (e.g. journaling) which incur a significant performance penalty. Since currently 0FS

provides only weak reliability guarantees, a comparison with a filesystem like GFS would be neither

meaningful nor very fair. Note also that it’s very hard to extend or remove features from GFS because

of its monolithic structure. (ii) Our FS prototype is currently implemented at the user level and thus has

more overheads than a filesystem implemented at the kernel level.

Our main objective in this chapter is to show that the proposed architecture does not introduce major

overheads or scalability bottlenecks and that our novel approach (i.e. decoupling block allocation and

locking from the filesystem) simplifies the distributed filesystem.

Next, in Chapter 6 we present RIBD, a system that extends Orchestra with mechanisms required to

provide reliability, enforce consistency of distributed metadata and ensure availability. In Section 6.8 we

compare RIBD to two popular filesystems, PVFS2 [Carns et al., 2000] and GFS [Preslan et al., 1999].

5.4.3 Summary

Overall, Orchestra is able to scale well when throughput is not limited by increased seek overheads in

physical disks. Moreover, 0FS follows the same scaling pattern as Orchestra in cases where there is little

sharing contention. Finally, these results suggest that our approach for providing increased functionality

and higher-level semantics at the block-level has potential for scaling to larger system sizes.

5.5 Limitations and Future work

Although Orchestra provides support for both easily extending storage systems as well as pushing new

functions closer to the storage devices, it is currently limited in three ways: (i) continuous operation in

the presence of faults, (ii) data protection, and (iii) client-side consistent caching.

To recover from failures Orchestra uses two (shadow) copies of virtual device metadata for the full

hierarchy. Thus, when one copy is updated on the disk, the other (shadow) copy of the metadata is stable

and reflects a previous consistent state of the system. When a failure occurs, the system can revert to the

previous copy of metadata, possibly losing updates that have occurred in-between. However, Orchestra

does not offer support for continuous operation (availability) and consistency when redundancy across

storage nodes is used (e.g. network RAID levels 1,5 or 6). The filesystems implemented on top of

it need to provide their own recovery mechanisms, such as write-ahead logs. Finally, another concern

regarding high availability that deserves further investigation is dynamic, consistent modifications of the

CHAPTER 5. ORCHESTRA: EXTENSIBLE, SHARED NETWORKED STORAGE 116

structure of a distributed hierarchy, e.g. to transparently add or remove storage resources and migrate

data accordingly.

RIBD, presented in the Chapter 6, extends Orchestra with mechanisms required to enforce consis-

tency of distributed metadata (data) in the presence of failures and to ensure availability. Our approach

relies on using lightweight transactions for providing atomicity with respect to failures and locks for

serializability.

Regarding data protection, Orchestra currently relies on traditional protection mechanisms, i.e.

checking for file attributes in kernel-level file systems. However, the ability to associate blocks with

metadata dynamically and on-demand provides the potential for (i) performing finer-grain protection

checking, and (ii) dynamically adjusting protection levels for blocks based on high-level features, e.g.

time-based protection mechanisms.

Finally, Orchestra does not support client-side consistent caching. It uses the OS buffer cache in

storage nodes for caching purposes, however this results in at least one network round-trip time for each

I/O operation. Support for client-side caching, however, requires support for consistency since data

and metadata may be cached in multiple application nodes. Such mechanisms can be implemented in

Orchestra and RIBD as virtual modules, but are currently left as a topic for future work.

5.6 Conclusions

In this chapter we present Orchestra, a low-level software framework aimed to take advantage of brick-

based architectures. Orchestra facilitates the development, deployment, and adaptation of low-level

storage services for various environments and application needs, by providing distributed virtual hierar-

chies over storage systems built out of commodity compute nodes, storage devices, and interconnects.

The main contributions of Orchestra can be summarized as follows:

• Orchestra provides a novel approach for building cluster storage systems which consolidates sys-

tem complexity in a single point, the Orchestra hierarchies. We examine how extensible, block-

level I/O paths can be supported over distributed storage systems. Orchestra deals with metadata

persistence and allows hierarchies to be distributed almost arbitrarily over application and storage

nodes, providing a lot of flexibility in the mapping of system functionality to available resources.

• Orchestra provides sharing at the block level, through block-level locking and allocation facilities

that can be inserted in distributed I/O hierarchies where required. A distinguishing feature of

CHAPTER 5. ORCHESTRA: EXTENSIBLE, SHARED NETWORKED STORAGE 117

Orchestra is that allocation and locking are both provided as in-band mechanisms, i.e. they are

part of the I/O stack and are not provided as external services. We believe that our approach

simplifies the overall design of a storage system and leaves more flexibility for determining the

most adequate hardware/software boundary.

• We examine how higher system layers can benefit from an enhanced block interface. Orchestra’s

support for block locking, allocation, and metadata persistence can significantly simplify filesys-

tem design. We design and implement a stateless, pass-through filesystem, ZeroFS (0FS), that

takes advantage of Orchestra’s advanced features and distributed virtualization mechanisms. 0FS

does not maintain internal state, uses Orchestra facilities for locking and block-allocation, and

does not require explicit communication among its instances.

We implement Orchestra and 0FS under Linux and evaluate them using various setups with single

and multiple storage and application nodes. We find that the modularity of Orchestra introduces little

overhead beyond TCP/IP communication and existing kernel overheads in the I/O protocol stack. Re-

sults on a cluster with 16 nodes show that Orchestra scales well both at the block as well as the filesystem

level.

Overall, we show that providing flexibility and extensibility in a distributed storage stack does not

introduce significant overheads and does not limit scalability. More importantly, our approach of provid-

ing extensible, virtual, block-level hierarchies over clustered storage systems takes advantage of current

technology trends and provides the ability to repartition storage functionality among various system

components, based on performance and semantic trade-offs.

Chapter 6

RIBD: Recoverable Independent Block

Devices

To find a fault is easy; to do better may be difficult.

—Plutarch (46 AD - 120 AD)

An early version of the protocol design in this chapter, without the implementation and evaluation has

been presented in [Flouris et al., 2006].

6.1 Introduction

Cluster-based storage architectures in use today resemble the structure shown in Figure 6.1-(a) where

a high-level layer such as a filesystem uses the services of an underlying block-level storage system

through a standard block-level interface such as SCSI. Concerns such as data availability and metadata

recovery after failures are commonly addressed through data redundancy (e.g., consistent replication) at

the file or block (or both) layers, and by metadata journaling techniques at the file layer. This structure,

where both redundancy and metadata consistency is built into the filesystem, leads to filesystems that

are complex, hard to scale, debug and tune for specific application domains [Prabhakaran et al., 2005a;

Yang et al., 2004; Prabhakaran et al., 2005b].

Modern high-end storage systems incorporate increasingly advanced features such as thin provi-

sioning [Compellent, 2008; IBM Corp., 2008c], snapshots [IBM Corp., 2008d], volume management

[EVMS; GEOM; Teigland and Mauelshagen, 2001], data deduplication [Quinlan and Dorward, 2002],

118

CHAPTER 6. RIBD: RECOVERABLE INDEPENDENT BLOCK DEVICES 119

(e.g. Logging, Versioning)
Block Metadata Consistency

(e.g. Logging, Versioning)
FS+Block Metadata Consistency

(Consistency Intervals)
Block−level Interface

Extended

Block−level Interface
Standard

Cluster Filesystem

(e.g. Logging, Versioning)
FS Metadata Consistency

Data Availability & Consistency
(e.g. Replication in GPFS)

Data Availability & Consistency
(e.g. Consistent Network RAID,

Petal, or erasure coding in FAB) (CIs & Consistent Network RAID)

Data Availability & Consistency

an
d

/ o
r

Cluster Filesystem

(b) RIBD(a) Cluster−based Storage System

Figure 6.1: Overview of typical cluster-based scalable storage architectures and RIBD.

block remapping [English and Alexander, 1992; Wang et al., 1999; Wilkes et al., 1996; Sivathanu et al.,

2003], and logging [Wilkes et al., 1996; Stodolsky et al., 1994]. The implementation of all such ad-

vanced features requires the use of significant block-level metadata, which are kept consistent using

techniques similar to those used in filesystems (Figure 6.1-(a)). Filesystems running over such ad-

vanced systems often duplicate effort and complexity by focusing on file-level optimizations such as

log-structured writes, or file defragmentation. Besides doubling the implementation and debugging ef-

fort, these file-level optimizations are usually irrelevant or adversely impact performance [Denehy et al.,

2002].

In this Chapter we propose Recoverable Independent Block Devices (RIBD), an alternative storage

system structure (depicted in Figure 6.1-(b)) that moves the necessary support for handling both data

and metadata consistency issues to the block layer in decentralized commodity platforms. RIBD ex-

tends Orchestra presented in Chapter 5, introducing the notion of consistency intervals (CIs) to provide

fine-grain consistency semantics on sequences of block level operations by means of a lightweight trans-

action mechanism. Our model of CIs is related to the notion of atomic recovery units (ARUs), which

were defined in the context of a local, centralized system [Grimm et al., 1996]. A key distinction be-

tween CIs and ARUs is that CIs handle both atomicity and consistency over multiple distributed copies

of data and/or metadata, whereas ARUs do not face consistency issues within a single system. RIBD ex-

CHAPTER 6. RIBD: RECOVERABLE INDEPENDENT BLOCK DEVICES 120

tends the traditional block I/O interface with commands to delineate CIs, offering a simple yet powerful

interface to the file layer.

One distinctive feature of RIBD is its roll-back recovery mechanism based on low-cost versioning,

that allows recovery and access not only to the latest system state (as journaling does), but to a set of

previous states. This allows recovery from malicious attacks and human errors, as discussed in detail in

Section 3.1. We believe that versioning is a particularly promising approach for building reliable storage

systems as it matches current disk capacity/cost tradeoffs. To the best of our knowledge, RIBD is the

first system to propose and demonstrate the combination of versioning and lightweight transactions for

recovery purposes at the block storage level.

We have implemented RIBD in the Linux kernel as a set of kernel modules extending Orchestra, and

exporting virtual devices layered over local or remote physical storage devices. We have also extended

ZeroFS (0FS), the simple file layer presented in Chapter 5, to operate on top of RIBD. 0FS is a user-

level, stateless, pass-through filesystem that merely translates file names to sets of blocks and specifies

CI boundaries in file operations. We evaluated RIBD using micro-benchmarks on a platform of 24

nodes (12 disk servers and 12 application/file servers). To understand the overheads in our approach, we

compared RIBD with two popular filesystems, PVFS2 [Carns et al., 2000] and the Global File System

(GFS) [Preslan et al., 1999], which however offer weaker guarantees. We found that RIBD offers simple

and clean interface to higher system layers and performs comparable to existing solutions with weaker

guarantees.

An early version of our protocol design, without the implementation and evaluation has been pre-

sented in [Flouris et al., 2006]. In this Chapter, we present the complete system design and its imple-

mentation, and evaluation.

The rest of the Chapter is organized as follows. In Section 6.2 we present our motivation for RIBD.

Sections 6.3, 6.4, and 6.5 present an overview of RIBD and the design of the underlying protocols

and components as well as the steps taken for recovering from faults. Sections 6.6 and 6.7 discuss

our prototype implementation and the platform we use for our evaluation. Section 6.8 presents our

experimental results. Finally, section 6.10 draws our conclusions and outlines future work.

CHAPTER 6. RIBD: RECOVERABLE INDEPENDENT BLOCK DEVICES 121

6.2 Motivation

In this Chapter we design a system that uses block level, roll back recovery (BC-RB/RF) and examine

its performance and scalability using a real prototype. Our design is motivated by the following issues.

6.2.1 File vs. block level

Local filesystems have traditionally used journaling (roll forward) for recovering from failures [Tweedie,

2000; Sweeney et al., 1996; Chutani et al., 1992]. Thus, for historical reasons, providing recovery by

means of journaling in scalable storage systems has been the natural evolution. However, this leads to a

number of issues:

• It requires the filesystem to be aware of replica allocation and placement. However, over the past

few years these functions have already moved mostly in the block level (e.g. with RAID systems).

This approach leads to duplicating certain functionality and thus, necessarily increasing system

complexity and possibly incurring higher overheads.

• If replication is to be provided by the block level, e.g. using a shared virtual disk such as Petal

[Lee and Thekkath, 1996] or RVSD [Attanasio et al., 1994], then the shared virtual disk has to

be designed specifically for the filesystem to ensure that faults are tolerated. For instance, when

GPFS [Schmuck and Haskin, 2002] is used with filesystem replication, it requires RVSD [At-

tanasio et al., 1994] to provide a shared disk abstraction, but does not guarantee recovery from all

types of failures, since RVSD does not provide consistent replication. Frangipani [Thekkath et al.,

1997] relies on Petal [Lee and Thekkath, 1996] for data and metadata replication and performs

metadata logging. However, Frangipani has been designed specifically for Petal, and it is not easy

to use either layer with other systems.

• Assuming that replication and metadata consistency are probably divided among the file and

block levels, journaling at the file level in an efficient manner becomes challenging. Typically, the

filesystem journal has to be accessible by other file servers, in case of a file server fails and there

is a need to replay its log. Also, the log itself needs to be replicated for dealing with disk failures.

As block placement, e.g. in disk arrays, is typically not under filesystem control, the file system

cannot always optimize accesses to the journal.

CHAPTER 6. RIBD: RECOVERABLE INDEPENDENT BLOCK DEVICES 122

Figure 6.2: Roll forward vs. roll back recovery at the block level.

Managing consistency issues for both replication and metadata in the block level has the potential to

address these issues and provide higher system layers (including the filesystem) with a simple and clean

interface to reliably using available storage.

6.2.2 Roll forward vs. roll backward

Figure 6.2 summarizes the main configurations with respect to roll forward or roll backward recovery at

the block level. The “thick” path in the figure describes the logging approach, with solid lines indicating

synchronous logging (marked A) and dashed lines indicating batched asynchronous logging (marked

B). Similarly, the “thin” path describes the versioning approach (mark C and D for synchronous and

batched asynchronous versioning respectively). The two (versioning and logging) approaches have

many similarities:

In all cases the filesystem provides the boundaries of consistency intervals using a transaction-type

API. The block level ensures that these intervals are handled appropriately. For this purpose, each disk

server can either maintain a log of operations, periodically flushing the log to the disk, or always apply

operations to the disk data, periodically creating different versions of the data on disk.

In the strictest (synchronous) case, both logging and versioning need to happen at each interval. For

performance reasons, however, it makes sense to perform these operations periodically, and every few

CHAPTER 6. RIBD: RECOVERABLE INDEPENDENT BLOCK DEVICES 123

intervals. In this (batched) case, there is a need for an agreement protocol to ensure that the system can

recover to a consistent point in terms both of data and metadata.

The main difference between the two approaches is that in logging, there is a need for a cleanup

procedure that will re-apply the log to the actual disk blocks, whereas in versioning, there is a need for

maintaining additional metadata for handling block versions. We believe that versioning has significant

advantages as it maintains in a structured manner previous versions of the data, allowing recovery to

any previous state of the system. Given, current disk capacity trends, we believe that recovery issues

should be resolved using versioning techniques.

6.3 RIBD Overview

RIBD tries to address issues at three levels: (a) abstraction and primitives it presents to higher layers, (b)

cost-effective scalability without compromising reliability, and (c) flexibility in its use. In this section

we present an overview of RIBD and discuss the abstraction it provides. The next sections discuss

primarily how it deals with consistency issues and to some extend how its implementation results in

flexibility.

Previous work and other systems show that explicitly handling atomicity in higher layers, e.g. by us-

ing journaling alongside non-trivial file semantics, results in complex systems. Filesystems that support

journaling tend to be hard to implement and even harder to modify and tune. Moreover, as lower system

layers provide higher level abstractions of system resources, e.g. by abstracting block allocation and

placement in a networked system, solutions for atomicity become difficult to optimize for performance.

For these reasons, RIBD hides this complexity by providing to higher system layers and applications

a simple abstraction based on consistency intervals (CIs), similar to transactions. Higher layers can

delineate a set of consecutive (block) operations as a consistency unit that will be handled appropriately

by RIBD. Figure 6.3 shows an example code segment from ZeroFS (0FS) that uses the RIBD API for

the file creation operation.

To provide cost-effective scalability without compromising reliability, RIBD uses a single, lightweight

transactional mechanism for both replica and metadata consistency, based on CI interface. Typically,

filesystem approaches require different mechanisms for dealing with metadata consistency and replica

consistency, as these refer to different entities, data blocks, file system metadata, and consistency meta-

data (e.g. the log itself). RIBD, by operating at the block level is able to use a single mechanism for all

CHAPTER 6. RIBD: RECOVERABLE INDEPENDENT BLOCK DEVICES 124

...

begin_ci();

lock(directory);

if (! lookup(filename, directory) {/* file exists? */

allocate_inode(&inode_addr);

lock(inode_addr);

write_file_metadata(inode_addr, name, attrib);

unlock(inode_addr);

init_dirent(dirent, inode_addr, name, attrib);

write_dir_metadata(directory, dirent);

}

unlock(directory);

end_ci();

...

Figure 6.3: Pseudo-code for a simple file create operation with one CI. It can be also implemented with

two smaller CIs, one for updating the file inode and one for the directory.

types of blocks, regardless of whether they refer to file data or metadata. Our transactional mechanism

uses agreement protocols for consistency, low-overhead versioning for atomicity, and relies on explicit

locking for isolation. Given that all requests are eventually written to disk, durability is provided in a

straight-forward manner at a configurable granularity by specifying a flush interval. The combination

of these low-level mechanisms results in little contention when there is no (true) access sharing at the

filesystem, does not impose dependencies during system operation for concurrent I/Os, and only in-

creases the response time of individual I/O requests, if the application requires the ability to recover

after each, single I/O operation.

Finally, the few optimized distributed storage systems (such as GPFS [Schmuck and Haskin, 2002])

addressing dependability issues in a single layer, the filesystem, have a monolithic structure and can

hardly be adapted or extended according to the needs of a given application, e.g. by providing cus-

tomizable replication. In contrast, the protocols that we propose can be easily added to (or removed

from) a modular software stack.

CHAPTER 6. RIBD: RECOVERABLE INDEPENDENT BLOCK DEVICES 125

6.3.1 System abstraction

Overall, CIs provide atomicity, consistency, and durability. Isolation is provided by a separate locking

API that is provided by RIBD. All block operations enclosed in a CI are guaranteed to be treated as

a single operation during recovery, i.e. all or none of the operations persist after a failure. A CI is

opened and closed by the client application using explicit block-level API commands. Given that we

are operating on the critical I/O path, we do not allow nested CIs. Essentially, a CI buffers all updated

operations on the client side, until the commit operation.

Higher system layers use RIBD CIs to delineate units of work that may leave the system in incon-

sistent state after a failure. This includes all critical updates to metadata operations, because the logical

structure of the storage system, such as a filesystem directory tree, must never become corrupted. CIs

may also be used to guarantee the consistency of data. However, a different trade-off may be adopted in

this regard: sometimes, users may be willing to accept occasional risks of data corruption, e.g. if they

can rely on backups or can easily regenerate the data, in exchange of increased performance. In this

case, the higher system layer need not include accesses to data in CIs. This decision on how CIs are

used is left to the filesystem. In our work and 0FS we choose to ensure both metadata and data con-

sistency, because managing inconsistencies with increasing volumes of information, quickly becomes a

difficult problem for the (in-experienced) user.

As mentioned, RIBD CIs do not provide isolation. This is achieved with appropriate block-level

locking operations in the filesystem code. Typically, such locking operations will occur within CIs.

Thus, along with write operations, we also need to buffer unlock operations that incur within CI bound-

aries, to avoid cascading effects during recovery.

We choose to not implement locking transparently at the CI boundaries, to allow for possible opti-

mizations at the file level, e.g. by using a different granularity for atomicity and for mutual exclusion.

Locks are only required for mutual exclusion, that is to ensure that two sets of operations on a given

resource do not overlap but are serialized. For instance, a client thread may lock a given file (or range

of blocks) to ensure that its updates will not be interleaved with updates from other clients. However,

in a file system, specific metadata maybe associated with specific data blocks. In this case, it may be

adequate for the client to include all metadata and data operations in a transaction but only lock the

metadata blocks.

In summary, RIBD provides atomicity, consistency, isolation, and durability properties for CIs as

CHAPTER 6. RIBD: RECOVERABLE INDEPENDENT BLOCK DEVICES 126

follows:

Atomicity Our mechanism guarantees that the updates encapsulated in a CI will be performed atomi-

cally, i.e. that a server will perform either all or none of the updates but never any other combina-

tion. This is achieved by buffering the updates on the client-side until the CI is closed.

Consistency CIs complete only after they are applied to all involved servers and replicas. Thus, at any

time, all data replicas impacted by CIs will be in a consistent state. This is achieved by means of

a two-phase commit protocol among disk servers.

Isolation CIs do not support implicit isolation. Instead, higher layers can guarantee isolation by using

explicit block-range locks that are provided by RIBD.

Durability All I/O operations eventually are performed on the disk. Although this can happen before a

CI is committed resulting in strong guarantees, this may have an adverse impact on performance.

RIBD uses a versioning mechanism of configurable granularity to allow tuning for data loss toler-

ance vs. performance impact for different applications. This configurable granularity is achieved

through an agreement protocol among disk servers.

Finally, there are practically two possible levels of granularity for CIs: node-level or process/thread-

level. Node-level CIs are easier to implement, require less metadata for versioning purposes (agreement

phase) and map directly to the most common failure domain, assuming that hardware or OS crashes are

more frequent than application-level thread crashes. On the other hand, thread-level CIs are conceptually

clearer (there is no imposed grouping of client threads based on the node they run on), induce less

contention on the client side for delineating CIs (one counter per thread), and offer the potential for

stronger recovery semantics, due their finer granularity. In our work we choose to use thread-level CI

granularity. This choice only impacts only the client side module in charge of CIs, and does not affect

the rest of the code.

6.3.2 Fault model

We assume that the networked storage system we are proposing behaves according to the timed asyn-

chronous model [Cristian and Fetzer, 1999]. We also assume that failures of server components (CPUs,

memories, disks, software faults) are fail-stop and the whole server containing the component crashes.

Similarly, we assume that network components fail permanently, and that transient network failures

CHAPTER 6. RIBD: RECOVERABLE INDEPENDENT BLOCK DEVICES 127

at links or switches are dealt with by the communication subsystem, as is typical for high-throughput

low-latency interconnects.

In case of any failure, data remains available as long as there is a functional path from the application

to the specific data blocks. In other words, all non-faulty components of the system keep operating in the

presence of faults, however data is only available, if at least one copy is accessible through non-faulty

components.

RIBD does not actively employ mechanisms to detect incorrect behavior. It assumes that component

errors are reported through return codes of synchronous or asynchronous operations. Thus, RIBD does

not deal with undetected errors or Byzantine behavior of components. Finally, we assume that file and

disk servers belong to a single administrative domain and are co-located. Thus, we do not deal with

disaster recovery issues.

Overall, RIBD ensures that:

• Any transient or permanent (hardware or software) component failure does not corrupt or destroy

stored information, unless it is the only remaining copy of the data.

• Any transient or permanent (hardware or software) component failure does not prevent a volume

from being accessed, unless there is no alternative path to accessing volume data.

• After any global failure, e.g. a total power failure, the system is to restart quickly from a consistent

and recent state, based on a configurable policy (tradeoff).

6.4 Underlying Protocols

Figure 6.4 illustrates the system structure. Table 6.1 describes the base functionality of each module.

6.4.1 Client-server transactional protocol

The protocol implementing atomicity involves two entities: the client-side CI manager (CCM) deployed

on all the client nodes and the server-side CI manager (SCM), on all the disk servers, as shown in

Figure 6.5.

CCM buffers the write and lock operations associated with a given CI (and services read request

from the buffer if necessary). Once the end of a CI has been detected, the CCM starts the two-phase

commit protocol: First, it batches the data updates in a single prepare request, which is propagated to

CHAPTER 6. RIBD: RECOVERABLE INDEPENDENT BLOCK DEVICES 128

...

...

...
...

CIs (CCM)

Redundancy (CRM)

Filesystem

Block Allocator

Client m

CIs (SCM)CIs (SCM)

CIs (CCM)

Coordinator (VC)
Version

Master Client

Disk Server 1

Leasing (CLM)

Disk Server n

Locks (SLM+SXM)

Redundancy (SRM)

Versioning (VM)

Server 2,3,...

Disk

Locks (SLM+SXM)

Redundancy (CRM)

Redundancy (SRM)

Versioning (VM)

Filesystem

Block Allocator

Disk Servers

Client 1
Clients

Leasing (CLM)

Clients 2,3,...

Figure 6.4: RIBD system architecture and protocol stack.

the SCM modules through the hierarchy (steps 1 and 2). At some point, this request is acknowledged by

the SCM on the servers and CCM checks its status (step 3). If the prepare request was successful, this

means that all the concerned disk servers have received the data to be written and agreed on it. Then,

CCM sends a commit request to all the involved disk servers (step 4). Note that a commit request can

be acknowledged (step 5) before it has reached the disk (step 6). This is done on purpose, in order to

lower the cost of the two-phase protocol, at the expense of weaker guarantees in terms of reliability.

On the SCM, the committed write requests are placed in a queue, whose behavior depends on the

current state of the versioning protocol. When the protocol is not running, the queue is pass-through

(it just logs the IDs of the CIs that are issued and keeps tracks of which ones have completed). When

the versioning protocol is running, the queue acts a buffer that allows to enforce a distributed agreement

among the server nodes regarding the CIs that should be included in the next version.

The lock(s) associated with a CI are released as soon as the commit message is sent to all involved

servers, without waiting for the commit acknowledgment. This optimization only works under the as-

sumption that the communication channel between any client and any server is reliable and ordered,

and that requests are not processed out of order on the server, at least until the level of the SCM mod-

ule. These assumptions are in line with the features of our prototype system and with most cluster

communication subsystems today.

CHAPTER 6. RIBD: RECOVERABLE INDEPENDENT BLOCK DEVICES 129

Client Modules Server Modules

CCM CI Manager SCM CI Manager

VC Version Coordinator VM Versioning Module

CRM Redundancy Module SRM Redundancy Module

CLM Leasing Module SLM Leasing Module

SXM Lock Manager

Table 6.1: Client (left) and server (right) module functions in RIBD. Client denotes block-level modules

on file servers, whereas Server denotes block-level modules on disk servers.

SCM only handles CIs and behaves as a pass-through layer for all kinds of requests that are outside

the scope of CIs (including read, write, lock, unlock). As explained before, some setups may only use

CIs for metadata updates and use basic write requests to access blocks associated with user data.

One should note that our terminology differs, in this regard, from the one traditionally employed in

the database community. In particular, we do not provide isolation and durability.

6.4.2 Versioning protocol

Versioning involves three main modules: the version coordinator (VC), the server CI manager (SCM),

and the version module (VM) that in charge of local versions. To simplify our description, we assume

that there is only one version coordinator, i.e. only one client node in charge of periodically triggering

the protocol to create a new version. However, in a realistic setup, this role may be attributed to several

clients, for better load balancing and increased fault-tolerance. Figure 6.6 shows an overview of the

versioning protocol in RIBD.

The creation of a new version relies on a two-phase protocol driven by the VC. The first phase aims

at determining a globally consistent point for the version. Upon reception of the message from the VC

(step 1), the SCM of each server temporarily queues the newly committed CIs and replies to the VC

with a list specifying, for each client stream, the ID of the last CI that was written to disk (step 2). The

VC can subsequently examine the replies from all the servers and compute a globally consistent version

map, which is sent to the servers (step 3).

The second phase triggers the creation of local versions on the servers according to the version map

(step 5 and 6). Before a version is actually taken on a server, CIs that are included in the version map

and not yet committed to disk are extracted from the queue and flushed to stable storage. The protocol

CHAPTER 6. RIBD: RECOVERABLE INDEPENDENT BLOCK DEVICES 130

...

......

...
B

U
FF

E
R

Unlock Z

Write Y

Write X

B
U

FF
E

R

Unlock Z

Write Y

Write X

B
U

FF
E

R

Unlock Z

Write Y

Write X

Client m

Filesystem

3. Servers
Ack Requests

Requests

2. Send buffered
Requests

2. Send buffered

4.Commit4.Commit

5.Ack5.Ack

1.CI "Prepare" 1.CI "Prepare"

Server CI Manager

 (SCM) (SCM)

Server CI Manager

Disk Server 1 Disk Server n

(CCM)

0. Commit CI

6.Perform

Updates
C

lie
nt

 C
I

M
an

ag
er

Figure 6.5: Transactional protocol between the client CI manager and multiple server CI managers.

used for CIs guarantees that, for any CI included in the version map, each involved server has received

the corresponding prepare request and thus, the required data updates. Triggering (periodic) versions

can occur in any one or more of several instance of VC.

After a global crash of the system, VC coordinates the recovery process by communicating with the

storage nodes in order to determine the most recent (and complete) version that can be used. This role

(coordination upon recovery) is assigned to a single instance of the module. Besides, this module can

also be used when a client application wants to trigger the creation of a new version.

The VC is also in charge of a periodic garbage collection protocol, aimed at reclaiming physical

storage space. The latter essentially detects versions that are too old or that did not (globally) succeed

and asks the disk servers to destroy the corresponding version of their local volume.

We use versioning to offer different recovery guarantees, depending on the requirements of (end

user) applications. As described, the versioning facility is based on CIs. Stronger recovery guarantees

allow for smaller data loss during recovery roll back, but incur the penalty of more frequent versioning.

In the extreme case, each CI commit can cause a new version, resulting in no data loss at all during

recovery. This batching ability is provided by an agreement protocol during the versioning protocol

described above.

CHAPTER 6. RIBD: RECOVERABLE INDEPENDENT BLOCK DEVICES 131

...

Coordinator (VC)
Version

Versioning Daemon0. Create
Global
Version

Master Client

Manager(VM)
Version

Manager(VM)
Version

2.Servers

3.Send
Global

Map &

3.Send
Global

Map &

Local
Version

Commit Commit

Commit Commit

"Prepare"

1.Version 1.Version

"Prepare"

Disk Server 1 Disk Server n

Server CI Manager Server CI Manager

send list of CIs

 (SCM) (SCM)
4. Create

5.Version 5.Version

6.Ack 6.Ack

Figure 6.6: Versioning protocol between the versioning coordinator, all server CI managers, and server

versioning modules.

A second, more involved decision is whether to acknowledge a CI as soon as all the servers have

agreed on its status (but not performed the related I/O operations on disk) or only after the CI is persis-

tent. In the first case, if a global crash of the storage system occurs, it is not guaranteed that the recovery

point will include the modifications even though the updates were successfully acknowledged to the

applications. The system can still recover to a previous consistent point, however, it will have acknowl-

edged a CI that was eventually not committed. In the second case, all CIs committed are guaranteed to

be part of the system after recovery. Our current prototype is based on the first strategy as this seems to

be adequate for most applications today. However, we believe that this parameter should be set at the

volume granularity.

6.4.3 Replication protocol

Availability can be achieved through redundancy mechanisms, such as replication, parity or erasure

coding. In our system we use data replication across different disk servers (called network RAID

[Kenchammana-Hosekotea et al., 2004] or RAIN: Redundant Array of Independent Nodes [Bohossian

et al., 2001]) as the only form of redundancy. We nonetheless believe that our approach can be adapted

to more complex formulas such as parity or erasure codes. The degree of replication (i.e. number of

replicas) is configurable and independent of the reliability protocols we present. Currently, we only

support RAIN-0, RAIN-1 and RAIN-10 functionality. This choice is based on current architectural and

CHAPTER 6. RIBD: RECOVERABLE INDEPENDENT BLOCK DEVICES 132

cost trends of storage devices [Gray, 2005], but is not fundamental in the operation of RIBD. The CRM

and SRM modules are responsible for providing local and network replication.

6.4.4 Lock protocol

We use locks based on leases for achieving mutual exclusion. Locks are provided for block ranges and

are handled by RIBD. A disk server module (SXM) manages lock requests from higher-layer modules.

The information on the current state of the locks is not stored in stable storage but only in memory.

Disks servers also keep track (SLM), on a per-client basis, of the locks that have been granted and

checks that a client sends periodic heartbeat messages to renew its leases. When a client is found to

be unresponsive, the server leasing module tells the server locking manager to release the locks and

takes measures so that future requests from this client will not corrupt the system (lock and read/write

requests will be discarded). Finally, a client leasing module (CLM) has the role of periodically renewing

the leases associated with the locks that it holds 1.

6.4.5 Liveness protocol

Temporary or permanent network partitions, although relatively unlikely, can put the system in a in-

correct state and must be addressed. To operate correctly despite network partitions, the system must

respect the two following invariants: (i) clients agree on the set of alive storage servers and (ii) storage

servers agree on the set of alive clients. The typical solution to deal with network partitions is to use a

cluster manager, which uses heartbeat messages and voting, in order to establish a quorum among the

cluster nodes. 2.

Once a majority of the nodes agree on the current members of the cluster, the remaining nodes (con-

sidered faulty) must be isolated from their well-behaving peers through a fencing service. The fencing

can be enforced at the hardware level (brutal power off via a remote power switch or network filtering

thanks to a manageable switch fabric) or, in some cases, at the software level (through reconfiguration

of the stack of the remaining nodes).

In our system, clients are not aware of each other and do not cooperate directly, which compli-

1It is also possible to place an additional module (on top of the client replication module), which will cache locks that are
not held anymore in order to increase responsiveness for future accesses by the same node. This module works in conjunction
with another module on the server node (so that the locks can be reclaimed through up-calls, if necessary).

2Studies have shown that a cluster manager can be scalable provided that the underlying network features hardware support
for multicast [Vogels et al., 1998], which is the case for Ethernet.

CHAPTER 6. RIBD: RECOVERABLE INDEPENDENT BLOCK DEVICES 133

cates handling “split brain” scenarios, because there is no mechanism allowing the servers to make an

agreement on the current set of clients. A key difference with Petal/Frangipani in this regard is that, in

Frangipani, a given lock is only managed by a single lock server, whereas in our design, we may have

multiple servers in charge of the same (conceptual) lock (because we have one lock for each copy of a

block). Thus, the complexity stems from the fact that we have multiple managers in charge of the same

logical resource.

We deal with this by deploying a (distributed) cluster manager (CM) only for the server nodes,

which does not only make decisions on the liveness of the member nodes but also elects a leader among

them. The leader server is assigned with an additional and specific network address, which is known by

the clients. When the CM detects that a server node is not alive, it triggers a fencing procedure for it.

6.5 System Roll-back and Recovery

In this section we briefly discuss system roll-back and recovery from five main types of failures: network

partitions, client (file server) failures, disk server failures, disk device failures, and global failures.

6.5.1 Roll-back operation

Roll-back to any of a set of previous states, is useful to quickly recover the system from malicious

activity of human error. In this case, the administrator issues a roll-back command from one of the file

servers. Through the server-side CI managers (SCMs) the “rollback” command reaches all the client-

side CI managers (CCMs), which freeze all outstanding CIs traffic to the system. Subsequently, the

versioning modules on the disk servers execute the roll-back command in their local versioned storage.

All disk servers, thus, roll-back in parallel to a globally consistent version. When the local roll-back is

complete in all disk servers, the CI managers restart accepting CIs and the system continues operation

in the rolled-back version. The file systems running on the file servers should not need to be restarted,

since they do not keep state about the underlying storage layer. However, applications relying on them

may need to be restarted.

The duration of a roll-back operation in our current prototype depends on the capacity of the stor-

age within a disk server, however processing of versioning metadata in our current prototype proceeds

quickly because they are placed sequentially on the disks. For a single disk server with a capacity of 16

TBs, roll-back time has been measured to less than a minute. Since disk servers roll-back in parallel,

CHAPTER 6. RIBD: RECOVERABLE INDEPENDENT BLOCK DEVICES 134

we expect approximately the same time for a system with similar capacity in each of the disk servers.

6.5.2 Network failures

On the clients, the management of network partitions only involves the communication layer. When

a client sends a request to a server, it arms a timer, which is destroyed when an acknowledgment is

received. The expiration of a timer indicates that a server is unreachable. In this case, the client must

contact the leader server to ask if the unresponsive node currently belongs to the group of alive servers3.

There are three possibilities:

(i) The leader replies that the server is not alive, where the communication layer returns an error to

the upper layer4.

(ii) The leader replies that the server is alive, then this means that a network partition prevents the

client from communicating with the server. In this case, the client considers itself disconnected from

the all the servers and the failed request should be acknowledged with a “disconnected” status. Upon

propagation of the acknowledgment in the RIBD hierarchy, all the modules will take the necessary

measures to invalidate the state information that they hold (locks, cached data and metadata). All future

requests should be rejected in the same way until a proper reconnection procedure succeeds.

(iii) The leader does not reply, which means that a network partition prevents the client from com-

municating with some or all of the servers. In this case, the disconnection procedure is employed as

well. Since the above protocol is handled at the communication layer, these issues do not impact the

rest of the I/O stack (the client-side modules only need to ensure proper measures for state invalidation

in case they receive a notification of disconnection).

Both clients and servers may need to be fenced in order to preserve the integrity of a system experi-

encing network partitions. However, a distinction should be made on the severity of the fencing method

to be used, according to the role played by a “failed” node. A server must be physically fenced because

we need to make sure that all the clients always get the same view of the set of available servers. On the

other hand, a client is responsible for fencing itself by voluntarily disconnecting from the set of servers.

A self-fenced client does not have to be shut down or rebooted5 and can (periodically) try to reconnect

3Note that the leader server should always be available. Using a cluster manager ensures this (if the leader crashes, a new
one will be elected).

4Typically, upon notification of this error, the replication layer will switch to degraded mode and discard the failed server.
5However, the errors returned to the (user-level) application may require an application-specific treatment (possibly includ-

ing a restart) but this is beyond the scope of our contribution.

CHAPTER 6. RIBD: RECOVERABLE INDEPENDENT BLOCK DEVICES 135

to the servers. Failure to reach all the alive servers (a list can be obtained from the leader) would indicate

that communications issues are still occurring and that reconnection can not happen.

6.5.3 File server/client failures

RIBD does not rely on client metadata for correct operation, and thus, client failures require little main-

tenance. The main issues are: releasing any acquired locks and guaranteeing appropriate operations of

CIs.

If a client fails while holding locks, this will eventually be detected by timeouts of the leases on a

subset of the servers. The server lease module on these nodes will react to the timeout by reclaiming all

the locks held by the client (sending unlock requests to the server-side locking module).

The atomicity of a CI is ensured by two properties: (i) the updates associated with a CI are buffered

on the client side until its closure and (ii) the 2-phase update protocol ensures that all the servers agree

on whether a CI should be committed or not.

If a client fails before a CI is closed (or before any prepare request is sent), then the CI will be

automatically discarded because it will not reach any server. If a client fails after sending the prepare

requests (a fraction or all of them), then the two-phase protocol is not sufficient to decide. This is a well

known issue of the 2PC protocol, which is blocking when the coordinator fails [Skeen, 1981]. Our solu-

tion, without assuming that the client may be able to recover quickly, if at all, relies on server timeouts

and the versioning protocol. On each server, when the SCM module receives a prepare request, it

also arms a corresponding timer. The timer is normally discarded when the associated commit request

arrives. If the timer expires, the prepare request is considered as suspect and further inquiry will

be necessary to determine if it deserves to be committed or not. The solution actually comes from the

next round of the versioning protocol: if at least one server has received a commit request, for the CI,

then the latter can be committed safely. Otherwise, the CI should be discarded. This resolution process

happens through the next “regular” round of the versioning protocol.

Note that the protocol described above is not optimal because it may discard a CI that could actually

be committed (if all the concerned servers have acknowledged the prepare request and the client

failed just before sending the first commit request). Yet, this scenario would seldom occur in practice

and thus, our approach trades recovery to a less recent point for simplicity in this regard.

CHAPTER 6. RIBD: RECOVERABLE INDEPENDENT BLOCK DEVICES 136

6.5.4 Disk failures

Disk failures on a server can be masked to the client if enough redundant data has been stored on other

available drives in the same disk server. In this case the server RAID layer will nonetheless notify

the administrator about the failure. After the faulty disk is replaced, the administrator triggers the

synchronization (a.k.a. “rebuild”) of the new disk by the server module. Since we are in the context of a

single node, the server RAID module acts as a central controller and traditional rebuild techniques can

be used.

If the disk failure cannot be masked by the disk server, the corresponding request will fail and an

error will be returned to the client replication module (CRM). For a read request, the CRM can then retry

the request to a replicated server node where it should hopefully succeed. If it fails, and no redundant

data are available, an error will be returned to the application.

A question is whether the faulty-disk node should be discarded eagerly (i.e. as soon as a the problem

is spotted) or if it should be kept on-line because a subset of the data may still be available. The first

option is simple but radical6. The second option is more complex and requires (i) to keep information

on the client RAID module (in order to keep track of the blocks that are still valid on the faulty node)

as well as (ii) to inform (through up-calls) all the clients that the server is in a degraded mode. For

simplicity, we choose to eagerly discard a server node with faulty disk(s), similar to discarding a failed

disk in a local RAID-1 module.

6.5.5 Disk server failures

In the occasion of a disk server failure, all disks attached to this server will become in-accessible. This

situation is equivalent to multiple disk failures and is thus, handled in a similar manner. Re-adding the

disk server (after repair) to the system requires synchronizing the on-disk data and the (volatile) state of

RIBD’s I/O stack with the rest of the active servers. Note that when the server restarts, the data on its

disks are considered lost and all data need to be recovered from its replica7.

When a disk server (re)starts, RIBD’s modules connect to the replica disk server and retrieve their

state from their replica modules. The versioning module, in particular, requires transferring live meta-

6The fencing operation could be triggered by the defective server itself. The latter may just discard (return with an error)
all the subsequent requests that it receives.

7Using the state in the versioning metadata maps it may be possible to avoid copying all the data from the replica. This
process, however, is beyond the scope of this work and is left for future work.

CHAPTER 6. RIBD: RECOVERABLE INDEPENDENT BLOCK DEVICES 137

data from the replica disk server node. For this purpose, while the disk server is recovering, the replica

node transfers all data and commands to the recovering server. When the resynchronization process is

complete, the disk server may resume normal operation in the next round of the versioning protocol.

6.5.6 Global failures

After a global crash of the system (for instance due to a power failure), and after all disk servers boot,

the first file server that connects to the system acts as a recovery coordinator. The version coordinator

(VC) runs on this file server and coordinates the recovery process by communicating with the available

disk servers in order to determine the available globally successful, consistent versions that can be

used for recovery. After all disk servers agree on the version to recover (possibly chosen by a human

administrator), they roll-back to that version and the system resumes normal operation and more file

servers are allowed to connect.

6.6 System Implementation

We implement all related protocols under Orchestra, an extensible block-level framework for decentral-

ized, cluster-based storage architectures presented in Chapter 5. Orchestra is implemented as a block

device driver module in the Linux 2.6 kernel accompanied by a set of simple user-level management

tools. The modular nature of Orchestra allows tailoring the functionality provided by a clustered storage

system to the diverse needs of applications (e.g. encryption, versioning, branching, caching, replication,

duplicate elimination). As discussed in Chapter 5, Orchestra supports sharing at the block level by

providing (optional) locking and allocation facilities.

We implement all RIBD protocols related to reliability as a set of building blocks, which can be lay-

ered appropriately in a Orchestra virtual hierarchy, as shown in Figure 6.4 and Table 6.1. It is therefore,

possible to enable/disable all reliability extensions, regardless of the “functional” features of the storage

system, e.g. the specific type of replication provided. Next, we comment on implementation issues of

each system component.

CI management modules (CTM, STM) implement the core of the CI mechanism.

The versioning module (VM) creates and manages remap-on-write versions of a local volume. It

is placed right on top of the SRM so that the “real” data and the metadata from all the above modules

can be treated in the same fashion. It interacts with the server CI manager (STM) in the context of the

CHAPTER 6. RIBD: RECOVERABLE INDEPENDENT BLOCK DEVICES 138

versioning protocol.

Version coordination (VC) is a lightweight process and will typically be performed by a single VC

that is elected once, at boot time. Another VC election can be triggered elected anytime the current VC

fails and is removed from the system.

Redundancy modules (CRM, SRM) operate in the same way both for the disk and file server sides.

Neither SRM nor CRM does need to run an agreement protocol. SRM handles only local replication,

whereas for CRM agreement is handled by the two-phase protocol by the CTM.

In our current implementation, the server lock and leasing modules (SLM, SXM) are integrated in

a single virtual device. Also, the client leasing modules (CLM) works in conjunction with the server

leasing module (SLM). These modules need to be “paired” in all RIBD configurations, where locking

is necessary.

6.6.1 ZeroFS (0FS)

To evaluate our approach we have extended ZeroFS (0FS), a stateless, pass-through filesystem pre-

sented previously in Chapter 5. 0FS allows shared, distributed access to files from different nodes.

Unlike distributed filesystems but similar to Frangipani [Thekkath et al., 1997], 0FS does not require

explicit communication between separate instances running on different application nodes. Typically,

communication is required for agreement purposes. Instead, 0FS uses the corresponding block-level

mechanisms provided by RIBD volumes.

0FS is implemented as a user-level library that provides I/O operations on files and directories.

Being user-level, 0FS needs to cross the kernel boundary several times during a file operation, whereas

a kernel implementation need only perform a single crossing.

The current version of 0FS does not support a (client-side) cache but relies on RIBD for any caching

it may perform. Our current design and implementation of RIBD does not support client-side caching,

mainly because storing state on the file-servers (clients) would complicate versioning and roll-back

recovery functionality. We believe that for scaling to large numbers of clients, client state should not

affect system state required for recovery purposes. Thus, existing approaches for client-side caching

need to be re-thought, especially given the availability of high-throughput low-latency interconnects,

which is beyond the scope of our work. Furthermore, as shown in our results (Section 6.8), the use

of a client-side cache does not always improve, but may also degrade performance, for example when

the workload is not file system metadata-intensive (i.e. consists of few large files and directories as our

CHAPTER 6. RIBD: RECOVERABLE INDEPENDENT BLOCK DEVICES 139

RIBD Component LOC

Core Orchestra Framework Driver 28285

Versioning Module (VM) 1606

Server Leasing Module (SLM) &

Server Locking Manager (SLM) 2109

Server CI Manager (SCM) 3452

Client Version Coordinator (VC) &

Client CI Manager (CTM) 2920

Server Redundancy Module (SRM) /

Client Redundancy Module (CRM) 1835

Client Leasing Module (CLM) 924

User-level config tools 4729

0FS user-level lib & tools 10670

Total 56530

Table 6.2: Lines of code (LOC) for RIBD components.

IOzone experiments). Such workloads are typical to many parallel applications.

We acknowledge, however, that the lack of a client-side cache in 0FS and RIBD is a significant

limitation, but we consider this outside the scope of this thesis. We intend to work on this in the future.

Finally, Table 6.2 shows the number of lines of code for each system component in our Linux 2.6

prototype. Components are divided in kernel modules, user-level tools, and 0FS. In total, RIBD consists

of approximately 40K lines of kernel code and 15K lines of user-level code.

6.7 Experimental Platform

Our evaluation platform is a 24-node cluster of commodity x86-based Linux systems. All cluster nodes

are equipped with dual AMD Opteron 244 CPUs and 1 GByte of RAM, while 12 nodes acting as disk

servers have additionally four 80GB Western Digital SATA disks each. All nodes are connected with a

1 Gbit/s Ethernet network (on-board Broadcom Tigon3 NIC) through a single 24-port GigE switch (D-

Link DGS-1024T). All systems run Redhat Enterprise Linux 5.0 with the default 2.6.18-8.el5 kernel.

CHAPTER 6. RIBD: RECOVERABLE INDEPENDENT BLOCK DEVICES 140

To examine the overhead of our protocols compared to existing systems we compare RIBD against

two other systems: A cluster filesystem, Global File System (GFS)[Preslan et al., 1999] system, and a

parallel filesystem, Parallel Virtual File System (PVFS2) [Carns et al., 2000; PVFS2]. These file systems

offer weaker guarantees compared to RIBD. We choose to use them because (a) they are widely used in

real setups and (b) contrasting RIBD to them will reveal the cost of offering stronger guarantees based

on our approach.

All data and metadata passing through RIBD’s stack, in all experiments are processed by the version-

ing modules at the disk-server side. In Section 6.8.5 we study the overhead of the versioning agreement

protocol, measuring 0FS with Postmark under four versioning frequencies. In the rest of the experi-

ments, however, we do not capture versions during their duration, in order to demonstrate the overhead

of the transaction protocol which is in the critical I/O path. Versioning overhead is not part of the sys-

tem’s critical path (i.e. on every update), and we expect that usually it will be triggered in the order of

tens of seconds or minutes to capture new globally consistent versions. Finally, we do not report de-

graded mode performance, since our goal is to show versioning and CI protocol overheads under normal

operation.

In the GFS setup we use GNBD and CLVM provided by RedHat’s Enterprise Linux 5.0. Note that

neither GNBD nor CLVM support data replication. Thus, to configure a replicated (RAIN-10) setup

for GFS we use the Linux software RAID driver (MD), which, however, does not maintain replica

consistency and does not incur any related overheads. In this setup, GFS reliability guarantees are

weaker than 0FS. PVFS2 is only available with support for striping configurations because it uses its

own networking protocol, which does not support data replication. In our setup we use the kernel

module of PVFS2 for the clients and ext3 for the server-exported storage.

All three filesystems (GFS, PVFS2, and 0FS) are installed and evaluated on the same 12 cluster

nodes acting as clients and using the same 12 server nodes with 48 disks in total. In the case of GFS and

PVFS2 we have tuned the filesystems for optimal performance according to the vendors manuals. In

our evaluation we use two cluster I/O benchmarks: IOZone [Norcott and Capps] and clustered PostMark

[Katcher].

IOZone is a filesystem benchmark tool that generates and measures a variety of file operations.

We use the distributed IOZone setup in version 3.233 to study file I/O performance for the following

workloads: sequential read and write, random read and write, reverse read and stride read. In all

workloads we vary the block size between 32 KBytes and 16 MBytes. We use a different 8-GByte file

CHAPTER 6. RIBD: RECOVERABLE INDEPENDENT BLOCK DEVICES 141

File Initial Files Transactions Files Created Read traffic Write traffic

Sizes (per client) (per client) (aggregate) (aggregate) (aggregate)

Workload A 1 - 10 MB 800 4000 33588 162 GBytes 223 GBytes

Workload B 10 - 100 MB 100 300 3072 126 GBytes 191 GBytes

Table 6.3: Cluster PostMark workloads.

for each client. The aggregate data volume for every IOZone run is 96 GBytes of data for all 12 clients.

PostMark [Katcher] is a synthetic filesystem benchmark that measures the transaction rate for a

workload simulating a large Internet electronic mail server. PostMark’s operation is described in detail

in Section 4.4.3.

The original version of PostMark is a single-node application. To use it in our setup, we modify

its initialization and termination code using MPI to: (a) spawn processes on a cluster of nodes, (b)

synchronize the various benchmark phases, and (c) communicate aggregate results at the end. Note that

the benchmark code itself remains unchanged. In our setup, each client node/process uses a different

directory on the cluster filesystem. The transactions issued by each process consist of (i) a create or

delete file operation and (ii) a read or append file operation. Each transaction type and its affected files

are chosen randomly. When all transactions complete, the remaining files are deleted.

We use two workloads for PostMark (Table 6.3) that differ in file size distribution (1-10 MBytes for

the first and 10-100 MBytes for the second), the number of initial files per client, and the number of

transactions per client. Both workloads create a sufficiently large number of files and enough read and

write traffic to fill in the node caches and allow for consistent results.

To facilitate interpretation of results, we use a symmetric system configuration with the 12 disk

servers 12 file servers/application clients for all filesystems. For the configuration of 0FS we have

used the protocol stack shown in Figure 6.4 and two data distribution setups: (i) a striped volume with

no redundancy, where all 48 disks in the cluster are striped at the disk server side (RAID-0) and the

disk servers are striped at the file server side (RAIN-0). (ii) a RAIN-10 volume with consistent RAIN-1

replication, where the disks are striped at the disk servers using RAID-0 and the disk servers are mirrored

and striped at the file server side (RAIN-10). In all RAID and RAIN setups we use a chunk-size of 128

KBytes.

Figure 6.7 shows the average number of write and unlock operations in each CI for workloads A,

B, for different request sizes. Writes, refer to individual I/Os that are performed to disks by the disk

CHAPTER 6. RIBD: RECOVERABLE INDEPENDENT BLOCK DEVICES 142

(a) Workload B (b) Workload A

Figure 6.7: PostMark CI breakdown to write, unlock operations in RIBD.

servers. Although the number of operations specified by the application in a CI is statically known, the

number of I/Os that are eventually generated by these operations depends on the block placement. Since

we measure this statistic on the disk server side, RAIN replication does not affect the number of I/Os in

each CI (but affects the number of CIs that disk servers see).

6.8 Experimental Results

In this section we examine the overhead associated with our approach on a setup with multiple storage

and filesystem nodes.

6.8.1 Overhead of Dependability Protocols

Figures 6.8, 6.9, and 6.10 show IOZone results for sequential, random and mixed workloads. There are

five curves on each graph, showing the three filesystem in a RAIN-0 setup and additionally GFS and

0FS on a RAIN-10 configuration. As mentioned, GFS in the RAIN-10 configuration does not support

a replica consistency scheme, and thus, has lower overhead.

In the case of sequential read (Figure 6.8-a) 0FS outperforms GFS and is very close to PVFS2 for

large block sizes. In the case of small requests, PVFS2 and GFS perform better due to their client-side

cache which aids sequential prefetching. For sequential writes (Figure 6.8-b) 0FS performs worse than

PVFS2 and GFS in large block sizes, showing the overhead of the reliability protocols. In RAIN-10

and for average request sizes (512KB-1MB), 0FS is similar to GFS. However, when the request size

increases, the increased number of acknowledgments for the two-phase protocol incur a performance

CHAPTER 6. RIBD: RECOVERABLE INDEPENDENT BLOCK DEVICES 143

(a) Sequential Read

(b) Sequential Write

Figure 6.8: IOZone sequential read/write results.

degradation of 15-20%. For small request sizes, performance is again lower due to the lack of client-side

caching.

In the case of random I/O, Figures 6.9(a)(b), 0FS performs better than both GFS and PVFS2, since

the random workload minimizes the client-side caching effects. Random write for the RAIN-10 volume

(Figure 6.9b) shows practically no performance overhead compared to GFS, which has no reliability

protocol. In the RAIN-0 case, the overhead of the protocol appears in the very large block sizes. Please

note that, even in the case of RAIN-0, our prototype uses CIs and the two-phase protocol for writes

since this is required to guarantee atomic updates of distributed data blocks.

In the case of random mixed I/O (70% reads - 30% writes) results, Figure 6.10 0FS performs

CHAPTER 6. RIBD: RECOVERABLE INDEPENDENT BLOCK DEVICES 144

(a) Random Read

(b) Random Write

Figure 6.9: IOZone random read/write results.

Figure 6.10: IOZone random mixed workload (70% read - 30% write) results.

CHAPTER 6. RIBD: RECOVERABLE INDEPENDENT BLOCK DEVICES 145

(a) Workload A (1 - 10MB files).

(b) Workload B (10 - 100MB files).

Figure 6.11: PostMark aggregate transaction rate (transactions/sec) for workloads A and B.

slightly better than GFS and PVFS2, in the RAIN-0 configuration. In the replicated setup (RAIN-10),

0FS performs significantly better than GFS, when the record size is increased. As mentioned above,

this occurs because the random workload minimizes the client-side caching effects.

Finally, in PostMark (Figure 6.118) we observe that 0FS mostly outperforms PVFS2 on RAIN-

0. GFS, on the other hand, maintains a lead in all cases, except in large request sizes, where 0FS

performs very close. We attribute this performance lead of GFS in metadata-intensive workloads to

the use of the client cache for metadata and the fact that 0FS needs to cross the kernel boundary 3-4

times per filesystem operation. As block size increases, this does not happen as often, and we are able

8Note that transactions reported in this figure are application-level transactions as reported by PostMark and not related to
RIBD’s operation.

CHAPTER 6. RIBD: RECOVERABLE INDEPENDENT BLOCK DEVICES 146

Figure 6.12: PostMark: Total data volume that reaches system disks.

to match GFS performance in large block sizes. The performance of GFS also shows that it performs

asynchronous logging, flushing the metadata log to disk infrequently.

As mentioned, 0FS does not use a client side cache. To examine the impact of the lack of a cache on

0FS we show in Figure 6.12 the total data volume that reaches physical disks. First, we see that in 0FS

configurations this amount is higher by up to about 20%. Second, (not shown here) the amount of data

for each request size remains approximately the same. Given that GFS performs better only for smaller

requests, we believe that the extra traffic is not a bottleneck that skews our results. On the other hand, the

GFS cache affects request response time, especially for small requests, and since PostMark is latency-

bound, we believe that this role of the client-cache results in the better GFS results for small request

sizes. This effect is exacerbated by the use of TCP/IP as our communication subsystem, which not only

incurs high latencies compared to state-of-the-art networks, but also exhibits problematic behavior, such

as the Incast problem [Phanishayee et al., 2008].

6.8.2 Overhead of Availability

To examine the performance overhead of providing availability, we compare the performance of RAIN-

0 vs. RAIN-10 with IOZone (Figures 6.8-6.9). This comparison is only applicable to GFS and 0FS.

We see that performance degrades by approximately a factor of two as expected, because of mirroring.

Read operations however, are an exception, where both GFS and 0FS perform better in RAIN-10 than

RAIN-0 for large requests because of the efficient load-balancing of replica reads.

For PostMark workloads (Figure 6.11) we observe also an average 20% performance degradation in

the transaction rate, despite the fact that available disk throughput is effectively reduced to half. Overall

we find that the performance impact of availability with 0FS in metadata-intensive workloads is in the

CHAPTER 6. RIBD: RECOVERABLE INDEPENDENT BLOCK DEVICES 147

(a) Sequential Read for RAIN-10 Setup (b) Sequential Write for RAIN-10 Setup

Figure 6.13: IOZone sequential results for 12 clients on RAIN-10 with up to 3 threads per client.

(a) Random Read for RAIN-10 Setup (b) Random Write for RAIN-10 Setup

Figure 6.14: IOZone random results for 12 clients on RAIN-10 with up to 3 threads per client.

range of 15-20%.

6.8.3 Impact of Outstanding I/Os

To examine the impact of increasing the number of outstanding I/Os in the system we use IOZone

with GFS and 0FS on a RAIN-10 configuration and PostMark with workloads A and B on RAIN-0

and RAIN-10. In these experiments we have used multiple benchmark threads per client node, thus

multiplying the load on the system and inducing more concurrent I/Os. IOZone supports multi-threaded

mode, however PostMark does not have such an option so we executed multiple PostMarks in parallel

on each node.

In Figures 6.13, 6.14 and 6.15 we see that increasing the number of outstanding I/Os of IOZone

from one to two, increases throughput for both GFS and 0FS up to about 30%. We observe, however,

CHAPTER 6. RIBD: RECOVERABLE INDEPENDENT BLOCK DEVICES 148

Figure 6.15: IOZone random mixed workload (70% read - 30% write) results for 12 clients on RAIN-10

with up to 3 threads per client.

(a) Workload A for RAIN-0 Setup

(b) Workload A for RAIN-10 Setup

Figure 6.16: PostMark aggregate transaction rate (transactions/sec) for workload A with up to 3 threads

per client.

CHAPTER 6. RIBD: RECOVERABLE INDEPENDENT BLOCK DEVICES 149

(a) Workload B for RAIN-0 Setup

(b) Workload B for RAIN-10 Setup

Figure 6.17: PostMark aggregate transaction rate (transactions/sec) for workload B with up to 3 threads

per client.

that in the case of GFS, more than two outstanding I/Os per client can degrade performance (sequential

reads) up to 20%.

In the case of PostMark (Figures 6.16 and 6.17), we also observe that increasing the number of

outstanding I/Os also increases throughput up to about 30% in GFS and 0FS. On the other hand, PVFS2

does not seem to benefit from the increased concurrent I/Os as its performance remains the same as with

the single thread. Finally, Figures 6.16 and 6.17 show that GFS does not seem to scale with more than

two threads per client. 0FS results with more than two threads are not available because of stability

issues in our prototype.

CHAPTER 6. RIBD: RECOVERABLE INDEPENDENT BLOCK DEVICES 150

6.8.4 Impact on System Resources

Now we examine the impact of our protocol on system resources, but looking at CPU utilization, disk

utilization and latency.

CPU utilization: Figure 6.18 shows the CPU utilization on the server and client sides for both Post-

Mark workloads. We show only system and wait times, as user time is always less than 5% and in most

cases less than 2%. First, we observe that overall system CPU utilization remains at low levels and up

to 25% in the worst case, while I/O wait times can rise up to 40% both on the server and client side.

However, the CPU has not been saturated in any of the experiments. Second, we note that all filesystems

have similar system CPU utilizations on the disk server side. Third, we observe that 0FS has a higher

variance in CPU utilization. CPU utilization increases with smaller requests sizes; Request size affects

CI size and thus, how frequently RIBD uses the underlying protocols. Small request sizes incur higher

CPU utilization on disk servers. Finally, we note that on the client side, GFS incurs significantly higher

CPU utilization, due to the use of a client-side cache.

Disk latency and utilization: Figure 6.19 shows the average disk response time for PostMark. Dif-

ferences in response time reflect longer seeks due to differences in block placement and access locality.

0FS incurs higher latency than GFS because it does not use a client-side cache and it cannot fence

metadata accesses. Thus, data and metadata requests alternate more frequently than in GFS, resulting

in longer seek times. Finally, Figure 6.21 shows average disk utilization. We see that RIBD results in

up to double disk utilization compared to GFS and PVFS.

Figure 6.20 shows the average disk throughput for read and write requests. We see that 0FS reaches

higher throughput. This is mainly due to the fact that RIBD is able to send to the disk larger requests

than GFS. GFS requests go through the client side cache and are eventually issued at smaller sizes to

the disk, resulting in lower throughput.

6.8.5 Impact of Versioning Protocol

To examine the impact of the versioning protocol in RIBD we repeat the PostMark experiment with 0FS

using workload B on RAIN-10 (shown in Figure 6.11(b)) and four versioning frequencies: 30 seconds,

60 seconds, 180 seconds and never (i.e. no versioning). The garbage collector that deletes versions

to free disk space when the disk is close to filling up, is also running during the experiments. The

CHAPTER 6. RIBD: RECOVERABLE INDEPENDENT BLOCK DEVICES 151

(a) Client CPU System Time for Workload A (b) Client CPU Wait Time for Workload A

(c) Server CPU System Time for Workload A (d) Server CPU Wait Time for Workload A

(e) Client CPU System Time for Workload B (f) Client CPU Wait Time for Workload B

(g) Server CPU System Time for Workload B (h) Server CPU Wait Time for Workload B

Figure 6.18: PostMark average CPU utilization (%) on the servers and clients for workloads A,B.

CHAPTER 6. RIBD: RECOVERABLE INDEPENDENT BLOCK DEVICES 152

(a) Workload A (Files 1-10MB) (b) Workload B (Files 10-100MB)

Figure 6.19: PostMark average (read/write) disk latency.

(a) Workload A (Files 1-10MB) (b) Workload B (Files 10-100MB)

Figure 6.20: PostMark average total (read and write) throughput per disk.

results are shown in Figure 6.22. As shown, the maximum overhead of this protocol on the PostMark

transaction rate is 21.7% for the 30 second version case with a block size of 64 KBytes. As the block size

is increased to 1 MByte, the overhead of the protocol becomes less that 2%. We also find that lowering

the versioning frequency improves performance slightly, since the versioning agreement protocol and

the garbage collector run less frequently.

6.8.6 Summary

Overall, we find that although RIBD’s protocols for maintaining consistency affect system behavior and

consume resources, performance and scalability, especially for larger requests, remains comparable to

GFS and PVFS2. We also find that performance in small requests and metadata-intensive workloads

is greatly enhanced by a client-side cache. Finally, we conclude that RIBD’s approach is better than

CHAPTER 6. RIBD: RECOVERABLE INDEPENDENT BLOCK DEVICES 153

(a) Workload A (Files 1-10MB) (b) Workload B (Files 10-100MB)

Figure 6.21: PostMark average disk utilization across all disks.

Figure 6.22: PostMark aggregate transaction rate (transactions/sec) for workload B and four versioning

frequencies.

existing solutions, since it offers stronger consistency guarantees with similar performance.

6.9 Limitations

A limitation of our RIBD and 0FS prototypes is that they do not support a client-side cache, mainly

because storing state on the file-servers (clients) would complicate versioning and roll-back recovery

functionality. A client-side cache is expected to offer performance benefits in certain workloads and

reduce network and disk I/O traffic, as shown in our results. We believe, however, that for scaling to

large numbers of clients, client state should not affect system state required for recovery purposes. Thus,

existing approaches for client-side caching may need to be re-thought, especially given the availability

CHAPTER 6. RIBD: RECOVERABLE INDEPENDENT BLOCK DEVICES 154

of high-throughput low-latency interconnects. Furthermore, as shown in our results (Section 6.8), the

use of a client-side cache does not always improve, but may also degrade performance, for example

when the workload is not file system metadata-intensive (i.e. consists of few large files and directories

as our IOzone experiments). Such workloads are typical to many parallel applications. We believe that

the design of a client-side cache involves tradeoffs between network latencies, consistency and recovery

protocol overheads and scalability. We consider this outside the scope of this thesis and we intend to

work on it in the future.

Another limitation of RIBD is that, after a global failure, the most recent recovery point is the most

recent global version captured. Data written after this event will be discarded. This limitation is inherent

to any asynchronous consistency scheme, either versioning or asynchronous logging, and can be solved

using synchronous metadata updates. Increasing the versioning or log flush frequency can mitigate the

problem, which is essentially a performance tradeoff.

In this work we have not implemented and validated the roll-back and recovery procedures for disk

server failures or global failures (described in Sections 6.5.1, 6.5.5 and 6.5.6) in real failure scenarios.

However, our belief that they are correct is based on the fact that versioning does not overwrite data, but

keeps many previous versions available. Based on that assumption we are able to recover because our

technique relies on the fact that we keep all data modification on the disk. Since our focus is examining

scalability and protocol overheads in the failure-free path, not the recovery, we do not implement and

evaluate the recovery procedures.

Furthermore, as discussed in Section 6.5.5, our resynchronization process of a failed disk server

is simple and inefficient. Using the state in the versioning metadata maps it should be possible to

avoid copying all the data from the replica server, resulting in much shorter rebuild time. This process,

however, is beyond the scope of this work and is left for future work.

Finally, in our evaluation platform we have used a Gigabit Ethernet interconnect, which especially

with TCP/IP exhibits high latencies and problems such as the Incast [Phanishayee et al., 2008]. Since

RIBD aims at center environment, it would be more appropriate to use higher throughput and lower

latency interconnects, such as 10-Gbit Ethernet, Infiniband [IBTA], or Myrinet [Myrinet]. We believe

that providing support for additional networking platforms is straightforward due to the modular design

of our framework and well-defined APIs.

CHAPTER 6. RIBD: RECOVERABLE INDEPENDENT BLOCK DEVICES 155

6.10 Conclusions

Cluster-based storage with commodity components is a promising alternative to scaling capacity and

performance of future storage systems in a cost-effective manner. However, their decentralized nature

poses important challenges, especially in terms of reliability and availability. Current solutions to this

problem focus mostly at the file level and result in complex systems that are difficult to design, scale,

and tune.

In this Chapter we discuss how consistency issues can be addressed at the block level providing a

simple abstraction. Our approach, RIBD, uses CIs, a lightweight transactional mechanism, agreement,

versioning, and explicit locking, to address consistency of both replicas and metadata. We discuss

in detail associated protocols and we implement RIBD on a real prototype, in the Linux kernel. We

evaluate our approach using a setup of 24 nodes (12 disk and 12 file servers). Overall, our contributions

in this Chapter are: (a) a taxonomy of alternative approaches and mechanisms for dealing with replica

and metadata consistency, (b) the design and implementation of a real prototype, (c) the evaluation of

RIBD in comparison with two popular filesystems, which shows that RIBD performs comparably to

systems with weaker consistency guarantees.

Chapter 7

Conclusions and Future Work

Reality is the murder of a beautiful theory by a gang of ugly facts.

—Robert L. Glass, CACM, 39(11), 1996.

7.1 Conclusions

Our hypothesis in this dissertation is that storage virtualization at the block-level with support for meta-

data management can be used to build scalable, reliable, available and customizable storage systems

with advanced features.

We have proved the hypothesis by addressing several problems in the emerging architecture of de-

centralized storage clusters. First, we have explored the requirements and merits of advanced block-level

virtualization functions, by providing transparent, low-overhead versioning at the block level. Second,

we have dealt with the issues of supporting extensions with advanced, metadata-intensive functionality

at the block-level, and the flexible creation of customized application-specific storage volumes. Third,

we have dealt with distributed storage resource sharing and management and provided mechanisms for

concurrent, scalable sharing of block-level storage. Finally, we have addressed the issues of providing

availability, replica consistency and recovery after failures in a decentralized storage cluster.

Overall, our contributions in this thesis are:

• We explore the usefulness, the mechanisms and the overheads associated with metadata-intensive

functions at the block level, with our work on block-level versioning. We find that block-level

versioning has low overhead and offers advantages over filesystem-based approaches, such as

156

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 157

transparency and simplicity.

• We design, implement and evaluate a block-level storage virtualization framework with support

for metadata-intensive functions. We show that our framework, Violin: (i) significantly reduces

the effort to introduce new functionality in the block I/O stack of a commodity storage node, and

(ii) provides the ability to combine simple virtualization functions into hierarchies with semantics

that can satisfy diverse application needs.

• We examine how extensible, block-level I/O paths can be supported over decentralized storage

clusters. We extend our single-node virtualization infrastructure, Violin, to Orchestra. Our ex-

tended framework allows for virtual hierarchies to be distributed almost arbitrarily over applica-

tion and storage nodes, providing a lot of flexibility in the mapping of system functionality to

available resources.

• We design and implement locking and allocation mechanisms for concurrent, scalable sharing of

block-level storage. Our framework supports shared dynamic metadata at the storage node side,

but not at the application servers.

• We address consistency issues at the block level, providing simple abstractions and necessary pro-

tocols. Our approach, RIBD, uses consistency intervals (CIs), a lightweight transactional mech-

anism, agreement, block-level versioning, and explicit locking, to address consistency of both

replicas and metadata. We implement RIBD on a real prototype, in the Linux kernel. In the same

area, we provide a taxonomy of alternative approaches and mechanisms for dealing with replica

and metadata consistency. Finally, we evaluate RIBD in comparison with two popular filesystems,

showing that RIBD performs comparably to systems with weaker consistency guarantees.

7.2 Future Work

Through our work we have identified interesting areas for future work on storage virtualization and

metadata-intensive off-loading. We present these topics next.

7.2.1 Data and Control Flow from Lower to Higher Layers

Traditionally, control and data in the I/O stack flows from higher to lower layers, for example from

the application to the filesystem, then to the block-layer stack and to the hardware device drivers. We

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 158

believe that in some cases, it makes sense to initiate “upcalls” from a lower layer to a higher one, such

as from a lower layer in the block I/O stack to a higher block layer or even to the filesystem on top.

We believe that support for upcalls would enable interesting functionality in the block-level stack (e.g.

client-side consistent block-level caching), and would be an interesting topic for future research.

7.2.2 Block-level Caching and Consistent Client-side Caches

Data and metadata caching has been traditionally placed at the filesystem level. The various caches, such

as the buffer cache, inode cache and directory entry caches, have been designed for the purposes of a

filesystem and are normally accessible only by it. This cache placement, in combination with block-level

virtualization, creates problems with data and metadata caching for the storage node side, since data no

longer need to pass through the filesystem layers and have thus no access to the built-on OS caching

mechanisms. We believe that exploring such issues is an interesting topic for future work, especially

since we expect block-level caching to significantly boost the performance of virtualized block-level

storage systems. Finally, we believe that caching at the client (application server) side is worthwhile to

explore, however this is a more complex topic and probably requires support for “upcalls” in order to

provide consistency.

7.2.3 Support for High-Availability of Client-side Metadata

The systems we have explored in this thesis, provide support for redundant paths and resources between

each client and the storage node side. However, we have not explored redundancy for providing high-

availability at the client side, that is to support active replication of requests between two clients, so

that in case of a single client failure the system continues to be available. We believe that this is an

interesting topic for future work.

7.2.4 Security for Virtualized Block-level Storage

The topic of security mechanisms for decentralized block-level storage was not within the scope of

this thesis, however we believe it is an interesting topic for future work. Significant work on back-

end storage security support has been presented in the NASD [Gibson et al., 1998] with object-level

capabilities. We believe, however, that it is worthwhile to explore whether the same concepts would be

applicable to the finer granularity of block-level storage.

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 159

7.2.5 New methods for ensuring metadata consistency and persistence

Block-level metadata consistency and persistence are critical to preventing data loss or corruption, how-

ever, providing such guarantees typically incurs high performance overheads. The problem is currently

solved using synchronous metadata consistency schemes (logging or versioning). To mitigate this im-

pact, high-performance non-volatile memory (e.g. NVRAM or battery-backed DRAM) is used in high-

end, expensive systems. We believe that new approaches to addressing this problem are an important

topic for future work.

7.3 Lessons Learned

During the course of this thesis we have been involved in the design, implementation and evaluation of

several storage system prototypes. In our experience decentralized storage architectures have a lot of

potential for scaling storage capacity and performance in a cost-effective manner. However, the lack of

central controllers poses important dependability challenges. For this reason few existing products are

currently based on this architecture [IBM Corp., 2008b; Hoffman, 2007; HYDRAstor, 2008].

Through our work we have realized that metadata at the block level are key enablers of advanced fea-

tures and we believe that they will be increasingly used in future systems. There are currently emerging

systems that use block level metadata. Examples range from flash-based SSDs that need large amounts

of dynamic metadata to remap blocks in order to achieve performance and wear-leveling, to the use

of block-level metadata to support features, such as thin provisioning [Compellent, 2008; IBM Corp.,

2008c], snapshots [IBM Corp., 2008d], volume management [EVMS; GEOM; Teigland and Mauelsha-

gen, 2001], data deduplication [Quinlan and Dorward, 2002], block remapping [English and Alexander,

1992; Wang et al., 1999; Wilkes et al., 1996; Sivathanu et al., 2003], and logging [Wilkes et al., 1996;

Stodolsky et al., 1994].

Metadata at the block level is a fundamental change with major repercussions for the traditional

I/O stack. The need for consistency, coherency, and caching mechanisms for block-level metadata will

result in duplicating file-system-level mechanisms at the block level. If the file system and block-level

storage evolve separately at each side of the block API, the complexity of the storage hierarchy will

increase significantly. In this case, the different mechanisms, assumptions and optimizations in the two

separate layers (file and block), will lead to limited efficiency, dependability, and behavior that is hard

to understand. Instead we believe that the layers in the I/O stack, either at the file or block level, will

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 160

need to operate in harmony, being aware of each other’s behavior, optimizations and assumptions. For

example, if the block layer performs block remapping without being aware of the assumptions of the

file layer, the latter’s data placement optimizations will become irrelevant with significant performance

issues, as we have seen also in this thesis.

An alternative approach is to eliminate block-level virtualization and perform all virtualization at

the file system level, as has been done with ZFS [Bonwick and Moore, 2008] and GPFS [Schmuck

and Haskin, 2002]. However, this approach leads to monolithic systems that will become complex and

unmanageable as they continue to incorporate more features. Furthermore, such systems will not work

effectively on virtualized block storage, because some of their optimizations (e.g. data placement) will

become irrelevant. Finally, our experience tells us that one-for-all solutions rarely work as expected,

especially when they are controlled be a single vendor.

In a different direction, semantically-smart disk systems, have explored the possibility of the block-

level subsystem to infer essential information about the higher layers, such as I/O access patterns, block

liveness data or file system structure and block relationships [Arpaci-Dusseau et al., 2006]. Such in-

formation would mitigate the problem and enable off-loading of many useful tasks to the block level,

e.g. secure deletion, data placement optimizations, and garbage collection. However, this gray-box ap-

proach works well only in cases where hints are adequate and there is no need for precise information.

For example, making assumptions about file system block liveness at the block level incurs a risk of

false inference that may lead to data loss.

Our view is that maintaining the traditional block API will continue to hinder off-loading virtualiza-

tion functions at the block-level. Virtual block devices can certainly perform several optimizations by

observing the file layer’s behavior, as has been demonstrated in the semantically-smart disk approach.

However, in other cases, such as block liveness, there is need for exact, accurate information from the

file layer that would enable off-loading of significant functionality, such as secure block deletion and

disk space savings in the case of versioning and thin provisioning. Thus, in order to facilitate off-loading

and better integration of the file and block layers, we believe that there’s a need for a new, redesigned

storage stack standard with richer APIs between I/O layers.

Finally, we believe that this is a period of change for personal storage, as people rely more and

more on stored digital information. As individuals (and small businesses) do not have the resources to

efficiently manage data storage, there is a question whether storage will become mostly a (commodity)

utility provided by storage providers, or due to social (e.g. concerns for the privacy of personal data)

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 161

and/or technical (e.g. network performance and availability) reasons will continue the current trend

of storing data at the owner’s physical space. How this question will be answered depends both on

technology and on social implications and it will be interesting to see how issues from both sides will

affect the evolution of storage.

Bibliography

Michael Abd-El-Malek, II William V. Courtright, Chuck Cranor, Gregory R. Ganger, James Hendricks,

Andrew J. Klosterman, Michael Mesnier, Manish Prasad, Brandon Salmon, Raja R. Sambasivan,

Shafeeq Sinnamohideen, John D. Strunk, Eno Thereska, Matthew Wachs, and Jay J. Wylie. Ursa

Minor: Versatile Cluster-Based Storage. In Proceedings of the 4th USENIX Conference on File and

Storage Technology (FAST ’05), Berkeley, CA, USA, December 2005. USENIX Association.

Anurag Acharya, Mustafa Uysal, and Joel Saltz. Active Disks: Programming Model, Algorithms and

Evaluation. In Proceedings of the Eighth International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS), pages 81–91, San Jose, California, October

3–7, 1998. ACM SIGARCH, SIGOPS, SIGPLAN, and the IEEE Computer Society.

Marcos K. Aguilera, Susan Spence, and Alistair Veitch. Olive: Distributed point-in-time branching

storage for real systems. In Proceedings of the 3rd Symposium on Networked System Design and

Implementation (NSDI ’06), 2006.

Marcos K. Aguilera, Arif Merchant, Mehul Shah, Alistair Veitch, and Christos Karamanolis. Sinfonia:

A New Paradigm for Building Scalable Distributed Systems. In Proc. of 21st ACM SIGOPS Sympo-

sium on Operating Systems Principles (SOSP’07), pages 159–174, New York, NY, USA, 2007. ACM.

ISBN 978-1-59593-591-5.

M. Ajtai, R. Burns, R. Fagin, D. Long, and L. Stockmeyer. Compactly Encoding Unstructured Inputs

with Differential Compression. Journal of the ACM, 39(3), 2002.

Cuneyt Akinlar and Sarit Mukherjee. A Scalable Distributed Multimedia File System Using Network

Attached Autonomous Disks. In IEEE/ACM International Symposium on Modeling, Analysis and

Simulation of Computer and Telecommunication Systems (MASCOTS), pages 180–, 2000.

162

BIBLIOGRAPHY 163

K. Amiri, D. Petrou, G. Ganger, and G. Gibson. Dynamic function placement for data-intensive cluster

computing. In Proceedings of the USENIX Annual Technical Conference, San Diego, CA, USA, June

2000. USENIX Association.

Khalil Amiri, Garth A. Gibson, and Richard Golding. Highly Concurent Shared Storage. In Proceedings

of 20th International Conference on Distributed Computing Systems (ICDCS ’00), pages 298–307,

Taipe, Taiwan, R.O.C, April 2000. IEEE Computer Society.

Eric Anderson. Results of the 1995 SANS Survey. ;login, The Usenix Association Newsletter, 20(5),

October 1995.

Eric Anderson, Michael Hobbs, Kimberly Keeton, Susan Spence, Mustafa Uysal, and Alistair Veitch.

Hippodrome: Running Circles Around Storage Administration. In Proceedings of the FAST ’02

Conference on File and Storage Technologies (FAST-02), pages 175–188, Berkeley, CA, January 28–

30 2002. USENIX Association.

Thomas E. Anderson, Michael D. Dahlin, Jeanna M. Neefe, David A. Patterson, Drew S. Roselli, and

Randolph Y. Wang. Serverless Network File Systems. ACM Transactions on Computer Systems, 14

(1):41–79, February 1996.

Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Lakshmi N. Bairavasundaram, Timothy E.

Denehy, Florentina I. Popovici, Vijayan Prabhakaran, and Muthian Sivathanu. Semantically-Smart

Disk Systems: Past, Present, and Future. Sigmetrics Performance Evaluation Review (PER), 33(4):

29–35, March 2006.

C. Attanasio, M. Butrico, C. Polyzois, S. Smith, and J. Peterson. Design and implementation of a

recoverable virtual shared disk. Technical Report IBM Research Report RC 19843, IBM T. J. Watson

Research Center, Yorktown Heights, NY, 1994.

Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, and Rolf Neugebauer.

Xen and the art of virtualization. In Proc. of the nineteenth ACM symposium on Operating systems

principles (SOSP19), pages 164–177, October 2003.

Richard Barker and Paul Massiglia. Understanding Storage Area Networks. John Wiley & Sons, Inc.,

2002.

BIBLIOGRAPHY 164

Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R. Wilson. Hoard: A scalable

memory allocator for multithreaded applications. In Proceedings of the 9th International Conference

on Architectural Support for Programming Languages and Operating Systems (ASPLOS IX), pages

117–128, November 2000.

Stephen J. Bigelow. Application-aware storage promises intelligence and automation.

http://searchstorage.techtarget.com/ generic/ 0,295582,sid5 gci1267371,00.html, August 2007.

Vasken Bohossian, Chenggong C. Fan, Paul S. LeMahieu, Marc D. Riedel, Jehoshua Bruck, and Lihao

Xu. Computing in the RAIN: A Reliable Array of Independent Nodes. IEEE Trans. Parallel Distrib.

Syst., 12(2):99–114, 2001.

Jeff Bonwick and Bill Moore. ZFS: The Last Word in File Systems. http://opensolaris.org/ os/ commu-

nity/ zfs/ docs/ zfs last.pdf, 2008.

M. R. Brown, K. N. Kolling, and E. A. Taft. The Alpine File System. ACM Transactions in Computing

Systems, 3(4):261–293, 1985. ISSN 0734-2071.

M. Burrows and D. J. Wheeler. A Block-sorting Lossless Data Compression Algorithm. Technical

Report SRC-RR-124, HP Labs, 1994.

Philip H. Carns, Walter B. Ligon III, Robert B. Ross, and Rajeev Thakur. PVFS: A Parallel File System

For Linux Clusters. In Proc. of the 4th Annual Linux Showcase and Conference, 2000.

S. Chutani, O. T. Anderson, M. L. Kazar, B. W. Leverett, W. A. Mason, and R. N. Sidebotham. The

Episode File System. In Proc. of the USENIX Winter 1992 Technical Conference, pages 43–60, San

Fransisco, CA, USA, 1992.

Russell Coker. Bonnie++ I/O Benchmark. http:// www.coker.com.au/ bonnie++.

Compellent. Storage Center Data Sheet. http://www.compellent.com/∼/media/ com/ Files/

Datasheets/DS FT 021908.ashx, 2008.

W. V. CourtrightII, G. A. Gibson, M. Holland, and J. Zelenka. RAIDframe: Rapid Prototyping for Disk

Arrays. Proceedings of the 1996 Conference on Measurement and Modeling of Computer Systems

(SIGMETRICS), 24(1):268–269, May 1996.

BIBLIOGRAPHY 165

Landon P. Cox, Christopher D. Murray, and Brian D. Noble. Pastiche: Making Backup Cheap and Easy.

In Proceedings of the 5th Symposium on Operating Systems Design and Implementation (OSDI-02),

Berkeley, CA, December 9–11 2002. The USENIX Association.

Flaviu Cristian and Christof Fetzer. The Timed Asynchronous Distributed System Model. IEEE Trans-

actions on Parallel and Distributed Systems, 10(6):642–657, 1999.

Miguel de Icaza, Ingo Molnar, and Gadi Oxman. The linux raid-1,-4,-5 code. In LinuxExpo, April 1997.

Wiebren de Jonge, M. Frans Kaashoek, and Wilson C. Hsieh. The Logical Disk: A New Approach to

Improving File Systems. In Proc. of 14th SOSP, pages 15–28, 1993.

T. Denehy, A. Arpaci-Dusseau, and R. Arpaci-Dusseau. Bridging the Information Gap in Storage Pro-

tocol Stacks. In Proceedings of the USENIX Annual Technical Conference (USENIX ’02), pages

177–190, June 2002.

Murthy Devarakonda, Bill Kish, and Ajay Mohindra. Recovery in the Calypso file system. ACM

Transactions in Computing Systems, 14(3):287–310, 1996. ISSN 0734-2071.

EMC Enginuity. EMC. Enginuity: The Storage Platform Operating Environment (White Paper).

http://www.emc.com/pdf/techlib/c1033.pdf.

EMC Symmetrix. EMC: Introducing RAID 5 on Symmetrix DMX. http://www.emc.com/ products/

systems/ enginuity/ pdf/ H1114 Intro raid5 DMX ldv.pdf.

Robert English and Stephnov Alexander. Loge: A Self-Organizing Disk Controller. In Proceedings of

the Winter 1992 USENIX Conference, Berkeley, CA, 1992. The USENIX Association.

Sadik C. Esener, Mark H. Kryder, William D. Doyle, Marvin Keshner, Masud Mansuripur, and David A.

Thompson. WTEC Panel Report on The Future of Data Storage Technologies. International Tech-

nology Research Institute. World Technology (WTEC) Division, June 1999.

EVMS. Enterprise Volume Management System. http://evms.sourceforge.net.

Fibre Channel. Fibre Channel Industry Association. Executive Summary. http://www.fibrechannel.org/

OVERVIEW/ index.html.

BIBLIOGRAPHY 166

Michail D. Flouris and Angelos Bilas. Clotho: Transparent Data Versioning at the Block I/O Level.

In 12th NASA Goddard & 21st IEEE Conference on Mass Storage Systems and Technologies

(MSST2004), April 2004.

Michail D. Flouris and Angelos Bilas. Violin: A Framework for Extensible Block-level Storage. In

Proceedings of 13th IEEE/NASA Goddard (MSST2005) Conference on Mass Storage Systems and

Technologies, Monterey, CA, April 11–14 2005.

Michail D. Flouris, Stergios V. Anastasiadis, and Angelos Bilas. Block-level Virtualization: How far can

we go? In Proceedings of Second IEEE-CS International Symposium on Global Data Interoperability

- Challenges and Technologies, Sardinia, Italy, June 20–24 2005.

Michail D. Flouris, Renaud Lachaize, and Angelos Bilas. Using Lightweight Transactions and Snap-

shots for Fault-Tolerant Services Based on Shared Storage Bricks. In Proc. of the International

Workshop on High Performance I/O Techniques and Deployment of Very Large Scale I/O Systems

(HiperIO ’06), September 2006.

Michail D. Flouris, Renaud Lachaize, and Angelos Bilas. Orchestra: Extensible Block-level Support

for Resource and Data Sharing in Networked Storage Systems. In Proc. of the 14th IEEE Interna-

tional Conference on Parallel and Distributed Systems (ICPADS’08), Melbourne, Victoria, Australia,

December 2008.

Gartner Group. Total Cost of Storage Ownership – A User-oriented Approach, September 2000.

GEOM. FreeBSD: GEOM Modular Disk I/O Request Transformation Framework.

http://kerneltrap.org/node/view/454.

Garth A. Gibson and John Wilkes. Self-managing network-attached storage. ACM Computing Surveys,

28(4es):209–209, December 1996. ISSN 0360-0300.

Garth A. Gibson, David F. Nagle, Khalil Amiri, Jeff Butler, Fay W. Chang, Howard Gobioff, Charles

Hardin, Erik Riedel, David Rochberg, and Jim Zelenka. A Cost-Effective, High-Bandwidth Stor-

age Architecture. In Proceedings of the 8th International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS), pages 92–103, San Jose, California,

October 3–7, 1998. ACM SIGARCH, SIGOPS, SIGPLAN, and the IEEE Computer Society.

BIBLIOGRAPHY 167

Garth R. Goodson, Jay J. Wylie, Gregory R. Ganger, and Michael K. Reiter. Efficient Consistency for

Erasure-coded Data via Versioning Servers. Technical Report CMU-CS-03-127, Carnegie Mellon

University, April 2003.

Jim Gray. Greetings from a Filesystem User. Keynote Address at the 4th USENIX FAST Conference,

December 2005.

Jim Gray. What Next? A Few Remaining Problems in Information Technology (Turing Lecture). In

ACM Federated Computer Research Conferences (FCRC), May 1999.

Jim Gray. Storage Bricks Have Arrived. Invited Talk at the First USENIX Conference on File And

Storage Technologies (FAST ’02), 2002.

R. Grimm, W.C. Hsieh, M.F. Kaashoek, and W. de Jonge. Atomic Recovery Units: Failure Atomic-

ity For Logical Disks. In Proceedings of the 16th IEEE International Conference on Distributed

Computing Systems (ICDCS), pages 26–37. IEEE Computer Society, 1996.

R. Hagmann. Reimplementing the Cedar file system using logging and group commit. In Proc. of the

11th ACM Symposium on Operating Systems Principles (SOSP’87), pages 155–162, New York, NY,

USA, 1987. ACM. ISBN 0-89791-242-X.

J. H. Hartman, I. Murdock, and T. Spalink. The Swarm Scalable Storage System. In Proceedings

of the 19th IEEE International Conference on Distributed Computing Systems (ICDCS ’99). IEEE

Computer Society, June 1999.

John H. Hartman and John K. Ousterhout. Zebra: A Striped Network File System. Technical report,

University of California at Berkeley, Berkeley, CA, USA, 1992.

J.S. Heidemann and G.J. Popek. File System Development with Stackable Layers. ACM Transactions

on Computer Systems, 12(1):58–89, February 1994.

Andy Hisgen, Andrew Birrell, Charles Jerian, Timothy Mann, and Garret Swart. New-value logging in

the Echo replicated file system. Technical Report 104, Xerox, Palo Alto CA (USA), 1993.

Dave Hitz, James Lau, and Michael Malcolm. File System Design for an NFS File Server Appliance. In

Proceedings of the USENIX Winter 1994 Technical Conference, pages 235–246, San Fransisco, CA,

USA, 17–21 1994. ISBN 1-880446-58-8.

BIBLIOGRAPHY 168

Patrick Hoffman. NEC Storage Platform Reduces Cost, Complexity. http://www.eweek.com/ article2/

0,1759,2103110,00.asp, March 2007.

Sam Hopkins and Brantley Coile. AoE (ATA over Ethernet). http://www.coraid.com/ documents/

AoEr10.txt.

HP OpenView. Hewlett-Packard: OpenView Storage Area Manager. http://h18006. www1.hp.com/

products/ storage/ software/ sam/ index.html.

Chuang hue Moh and Barbara Liskov. Timeline: A high performance archive for a distributed object

store. In In 1st Symposium on Networked Systems Design and Implementation (NSDI ’04), 2004.

Norman C. Hutchinson, Stephen Manley, Mike Federwisch, Guy Harris, Dave Hitz, Steven Kleiman,

and Sean O’Malley. Logical vs. Physical File System Backup. In Proc. of the 3rd USENIX Symposium

on Operating Systems Design and Impl. (OSDI99), February 1999.

HYDRAstor. NEC Corp. http://www.necam.com/HYDRAstor, 2008.

IBM Corp. Collective Intelligent Bricks (CIB) Project. http://www.almaden.ibm.com/ StorageSystems/

autonomic storage/ clockwork/ index.shtml, 2008a.

IBM Corp. XIV Storage. http://www.xivstorage.com, 2008b.

IBM Corp. Delivering the Thin Provisioning Advantage with XIV’s Nextra Architecture White Pa-

per. http://www.xivstorage.com/ materials/ white papers/ nextra thin provisioning white paper.pdf,

2008c.

IBM Corp. XIV Nextra Snapshot Implementation White Paper. http://www.xivstorage.com/ materials/

white papers/ nextra snapshot white paper.pdf, 2008d.

IBTA. InfiniBand Trade Association. About InfiniBand. http://www.infinibandta.org/ about/

about infiniband/.

IDC. International Data Corporation. The Diverse and Exploding Digital Universe - An Updated

Forecast of Worldwide Information Growth Through 2011. White Paper - sponsored by EMC,

http://www.emc.com/ leadership/ digital-universe/ expanding-digital-universe.htm, March 2008.

Iometer. The I/O Performance Analysis Tool. http://www.iometer.org.

BIBLIOGRAPHY 169

iSCSI. IETF IP Storage Working Group. iSCSI Internet Draft. http://www.ietf.org/ internet-drafts/

draft-ietf-ips-iscsi-20.txt.

James E. Johnson and William A. Laing. Overview of the Spiralog File System. Digital Technical

Journal, 8(2):5–14, 1996. ISSN 0898-901X.

C. Jurgens. Fibre Channel: A Connection to the Future. IEEE Computer, 28(8):88–90, 1995.

M. Frans Kaashoek, Dawson R. Engler, Gregory R. Ganger, Hector Briceno, Russel Hunt, David

Mazieres, Thomas Pinckney, Robert Grimm, John Janotti, and Kenneth Mackenzie. Application

Performance and Flexibility on Exokernel Systems. In Symposium on Operating Systems Principles

(SOSP ’97), pages 52–65, 1997.

Jeffrey Katcher. PostMark: A New File System Benchmark. http://www.netapp.com/tech library/

3022.html.

Kimberly Keeton and John Wilkes. Automatic design of dependable data storage systems. In Proc. of

Workshop on Algorithms and Architectures for Self-managing Systems, pages 7–12, San Diego, CA,

June 2003.

Kimberly Keeton, David A. Patterson, and Joseph M. Hellerstein. A Case for Intelligent Disks (IDISKs).

SIGMOD Record, 27(3):42–52, 1998.

Deepak R. Kenchammana-Hosekotea, Richard A. Golding, Claudio Fleiner, and Omer A. Zaki. The De-

sign and Evaluation of Network RAID protocols. Research report RJ 10316, IBM Almaden Research

Center, March 2004.

Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek. The Click modular

router. ACM Transactions on Computer Systems, 18(3):263–297, August 2000.

Orran Krieger and Michael Stumm. HFS: a performance-oriented flexible file system based on building-

block compositions. ACM Transactions in Computing Systems, 15(3):286–321, 1997. ISSN 0734-

2071.

Nancy P. Kronenberg, Henry M. Levy, and William D. Strecker. Vaxcluster: a closely-coupled dis-

tributed system. ACM Transactions on Computer Systems, 4(2), 1986.

BIBLIOGRAPHY 170

John Kubiatowicz, David Bindel, Yan Chen, Patrick Eaton, Dennis Geels, Ramakrishna Gummadi,

Sean Rhea, Hakim Weatherspoon, Westly Weimer, Christopher Wells, and Ben Zhao. OceanStore:

An Architecture for Global-scale Persistent Storage. In Proceedings of ACM ASPLOS, November

2000.

Neal Leavitt. Application Awareness Makes Storage More Useful. IEEE Computer, 41(7):11–13, 2008.

ISSN 0018-9162.

Edward K. Lee and Chandramohan A. Thekkath. Petal: Distributed Virtual Disks. In Proceedings

of the Seventh International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS VII), Computer Architecture News, volume 24:Special, pages 84–93.

ACM SIGARCH/SIGOPS/SIGPLAN, October 1996.

Greg Lehey. The Vinum Volume Manager. In Proceedings of the FREENIX Track (FREENIX-99),

pages 57–68, Berkeley, CA, June 6–11 1999. USENIX Association.

Michael Lesk. How Much Information Is There In the World? http://www.lesk.com/ mlesk/ ksg97/

ksg.html, 1997.

Barbara Liskov, Sanjay Ghemawat, Robert Gruber, Paul Johnson, and Liuba Shrira. Replication in the

Harp File System. In SOSP ’91: Proceedings of the thirteenth ACM symposium on Operating systems

principles, pages 226–238, New York, NY, USA, 1991. ACM. ISBN 0-89791-447-3.

C. R. Lumb, R. Golding, and G. R. Ganger. D-SPTF: Decentralized Request Distribution in Brick-Based

Storage Systems. In Proceedings of the 11th ACM ASPLOS Conference, Boston, MA, USA, October

2004.

Peter Lyman and Hal R. Varian. How Much Information. http://www.sims.berkeley.edu/ how-much-

info-2003, 2003.

John MacCormick, Nick Murphy, Marc Najork, Chandramohan A. Thekkath, and Lidong Zhou. Box-

wood: Abstractions as the Foundation for Storage Infrastructure. In Proc. of the 6th Symposium on

Operating Systems Design and Implementation (OSDI-04). USENIX, December 6–8 2004.

J. Menon, D. A. Pease, R. Rees, L. Duyanovich, and B. Hillsberg. IBM Storage Tank - A heterogeneous

scalable SAN file system. IBM Systems Journal, 42(2):250–267, 2003.

BIBLIOGRAPHY 171

M. Mesnier, G. R. Ganger, and E. Riedel. Object-Based Storage. IEEE Communications Magazine, 41

(8):84–90, August 2003.

James G. Mitchell and Jeremy Dion. A comparison of two network-based file servers. Communications

of the ACM, 25(4):233–245, 1982. ISSN 0001-0782.

Joe Moran, Bob Lyon, and Legato Systems Incorporated. The Restore-o-Mounter: The File Motel

Revisited. In Proc. of USENIX ’93 Summer Technical Conference, June 1993.

David Mosberger and Larry L. Peterson. Making Paths Explicit in the Scout Operating System. In Proc.

of the 2nd USENIX Symposium on Operating Systems Design and Impl. (OSDI96), October 28–31

1996.

S. J. Mullender and A. S. Tanenbaum. Immediate files. Software Practice and Experience, 14(4):

365–368, 1984.

Myrinet. Myricom, Inc., Myrinet Overview. http://www.myri.com/ myrinet/ overview/.

Nils Nieuwejaar and David Kotz. The Galley Parallel File System. In Proc. of the 10th ACM Interna-

tional Conference on Supercomputing, pages 374–381, Philadelphia, PA, 1996. ACM Press.

William D. Norcott and Don Capps. IOzone Filesystem Benchmark. http://www.iozone.org.

Michael A. Olson. The design and implementation of the inversion file system. In Proc. of USENIX ’93

Winter Technical Conference, January 1993.

S. W. O’Malley and L. L. Peterson. A Dynamic Network Architecture. ACM Transactions on Computer

Systems, 10(2):110–143, May 1992.

Walter Oney. Programming the Microsoft Windows Driver Model, Second Edition.

http://www.microsoft.com/ mspress/ books/ 6262.asp.

D. Patterson. The UC Berkeley ISTORE Project: bringing availability, maintainability, and evolutionary

growth to storage-based clusters. http://roc.cs.berkeley.edu, January 2000.

R. Hugo Patterson, Stephen Manley, Mike Federwisch, Dave Hitz, Steve Kleiman, and Shane Owara.

SnapMirror: File-System-Based Asynchronous Mirroring for Disaster Recovery. In Proceedings of

the FAST ’02 Conference on File and Storage Technologies (FAST-02), pages 117–130, Berkeley, CA,

January 28–30 2002. USENIX Association.

BIBLIOGRAPHY 172

Amar Phanishayee, Elie Krevat, Vijay Vasudevan, David G. Andersen, Gregory R. Ganger, Garth A.

Gibson, and Srinivasan Seshan. Measurement and Analysis of TCP Throughput Collapse in Cluster-

based Storage Systems. In Proc. of the 6th USENIX Conference on File and Storage Technologies

(FAST08), pages 175–188, 2008.

Rob Pike, Dave Presotto, Ken Thompson, and Howard Trickey. Plan 9 from bell labs. In Proc. of the

Summer UKUUG Conference, 1990.

Rob Pike, Dave Presotto, Sean Dorward, Bob Flandrena, Ken Thompson, Howard Trickey, and Phil

Winterbottom. Plan 9 from Bell Labs. Computing Systems, Summer, 1995., 8(3):221–254, Summer

1995.

Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Analysis and Evo-

lution of Journaling File Systems. In Proceedings of the USENIX Annual Technical Conference

(USENIX ’05), pages 105–120, Anaheim, CA, April 2005a.

Vijayan Prabhakaran, Lakshmi N. Bairavasundaram, Nitin Agrawal, Haryadi S. Gunawi, Andrea C.

Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. IRON File Systems. In Proceedings of the 20th

ACM Symposium on Operating Systems Principles (SOSP ’05), pages 206–220, Brighton, United

Kingdom, October 2005b.

K. W. Preslan, A. Barry, J. Brassow, M. Declerk, A. J. Lewis, A. Manthei, B. Marzinski, E. Nygaard,

S. Van Oort, D. Teigland, M. Tilstra, S. Whitehouse, and M. O’Keefe. Scalability and Recovery in

a Linux Cluster File System. In Proceedings of the 4th Annual Linux Showcase and Conference,

College Park, Maryland, USA, October 2000.

Kenneth W. Preslan, Andrew P. Barry, Jonathan E. Brassow, Grant M. Erickson, Erling Nygaard,

Christopher J. Sabol, Steven R. Soltis, David C. Teigl, and Matthew T. O’keefe. A 64-bit, shared

disk file system for Linux. In 16th IEEE Conference on Mass Storage Systems and Technologies

(MSST ’99), March 1999.

PVFS2. PVFS2 Project Home Page. http://www.pvfs.org.

Sean Quinlan and Sean Dorward. Venti: A New Approach to Archival Data Storage. In Proceedings of

FAST ’02, pages 89–102. USENIX, January 28–30 2002.

ReiserFS. Namesys. http://www.namesys.com.

BIBLIOGRAPHY 173

W. D. Roome. 3DFS: A Time-Oriented File Server. In Proceedings of USENIX ’92 Winter Technical

Conference, January 1992.

Yasushi Saito, Svend Frølund, Alistair C. Veitch, Arif Merchant, and Susan Spence. FAB: building dis-

tributed enterprise disk arrays from commodity components. In Proceedings of the 11th International

Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS

2004, Boston, MA, USA, October 7-13, 2004, pages 48–58. ACM Press, 2004.

Douglas S. Santry, Michael J. Feeley, Norman C. Hutchinson, Alistair C. Veitch, Ross W. Carton, and

Jacob Ofir. Deciding When to Forget in the Elephant File System. In Proceedings of 17th SOSP,

December 1999.

SATA. Serial ATA Working Group. Serial ATA Specifications. http://www.serialata.org.

Paul W. Schermerhorn, Robert J. Minerick, Peter W. Rijks, and Vincent W. Freeh. User-level Extensi-

bility in the Mona File System. In Proc. of Freenix 2001, pages 173–184, June 2001.

Frank Schmuck and Roger Haskin. GPFS: A Shared-disk File System for Large Computing Centers.

In USENIX Conference on File and Storage Technologies, pages 231–244, Monterey, CA, January

2002.

Margo I. Seltzer, Gregory R. Ganger, M. Kirk McKusick, Keith A. Smith, Craig A. N. Soules, and

Christopher A. Stein. Journaling Versus Soft Updates: Asynchronous Meta-data Protection in File

Systems. In Proceedings of the 2000 USENIX Annual Technical Conference (USENIX ’00), pages

71–84, Berkeley, CA, June 18–23 2000. USENIX Association.

R. A. Shillner and E. W. Felten. Simplifying Distributed File Systems Using a Shared Logical Disk.

Technical Report TR-524-96, Princeton University, Princeton, NJ, USA, October 1996.

Muthian Sivathanu, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Evolving RPC for

Active Storage. In Proceedings of the Tenth International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS X), pages 264–276, San Jose, CA, Octo-

ber 2002.

Muthian Sivathanu, Lakshmi Bairavasundaram, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-

Dusseau. Life or Death at Block-Level. In Proceedings of the Sixth Symposium on Operating Systems

Design and Implementation (OSDI ’04), San Francisco, CA, December 2004.

BIBLIOGRAPHY 174

Muthian Sivathanu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Somesh Jha. A logic

of file systems. In Proceedings of the 4th USENIX Conference on File and Storage Technologies

(FAST’05), Berkeley, CA, USA, 2005a. USENIX Association.

Muthian Sivathanu, Lakshmi Bairavasundaram, Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau.

Database-aware semantically-smart storage. In Proceedings of the 4th Conference on USENIX Con-

ference on File and Storage Technologies (FAST’05), pages 18–18, Berkeley, CA, USA, 2005b.

USENIX Association.

Muthian Sivathanu, Vijayan Prabhakaran, Florentina Popovici, Timothy E. Denehy, Andrea C. Arpaci-

Dusseau, and Remzi H. Arpaci-Dusseau. Semantically-Smart Disk Systems. In Proceedings of the

FAST ’03 Conference on File and Storage Technologies (FAST-03). USENIX Association, April 2003.

Dale Skeen. Nonblocking commit protocols. In SIGMOD ’81: Proceedings of the 1981 ACM SIGMOD

international conference on Management of data, pages 133–142, New York, NY, USA, 1981. ACM.

ISBN 0-89791-040-0.

Glenn C. Skinner and Thomas K. Wong. Stacking/ vnodes: A progress report. In Proc. of the USENIX

Summer 1993 Technical Conference, pages 161–174, Berkeley, CA, USA, June 1993. USENIX As-

sociation.

EMC SnapView. Snapview data sheet. http://www.emc.com/pdf/ products/ clariion/SnapView2 DS.pdf.

SNIA. Storage Networking Industry Association End User Council Survey - Top Ten Pain Points Report.

http://www.snia.org/ collateral/ TopTenPainPoints Report Final 040823.pdf.

Craig A.N. Soules, Garth R. Goodson, John D. Strunk, and Gregory R. Ganger. Metadata Efficiency in

Versioning File Systems. In Proceedings of the FAST ’03 Conference on File and Storage Technolo-

gies (FAST-03), Berkeley, CA, April 2003. The USENIX Association.

Daniel Stodolsky, Mark Holland, II William V. Courtright, and Garth A. Gibson. Parity-logging disk

arrays. ACM Trans. Comput. Syst., 12(3):206–235, 1994. ISSN 0734-2071.

Storactive. Delivering Real-Time Data Protection & Easy Disaster Recovery for Windows Workstations.

http://www.storactive.com/files/ Storactive Whitepaper.doc, January 2002.

BIBLIOGRAPHY 175

John D. Strunk, Garth R. Goodson, Michael L. Scheinholtz, Craig A. N. Soules, and Gregory R. Ganger.

Self-Securing Storage: Protecting Data in Compromised Systems. In Proceedings of the 4th Sympo-

sium on Operating Systems Design and Implementation (OSDI-00), pages 165–180, Berkeley, CA,

October 23–25 2000. The USENIX Association.

Jeremy Sugerman, Ganesh Venkitachalam, and Beng-Hong Lim. Virtualizing I/O Devices on VMware

Workstation’s Hosted Virtual Machine Monitor. In Proc. of USENIX 2001 Annual Technical Confer-

ence, June 2001.

Sun Microsystems. Instant Image White Paper. http://www.sun.com/ storage/ white-papers/

ii soft arch.pdf, 2008.

Sun Microsystems. Lustre File System: High-Performance Storage Architecture and Scalable Cluster

File System. http://www.sun.com/ software/ products/ lustre/ docs/ lustrefilesystem wp.pdf, Decem-

ber 2007.

Adam Sweeney, Doug Doucette, Wei Hu, Curtis Anderson, Mike Nishimoto, and Geoff Peck. Scalabil-

ity in the XFS file system. In Proc. of the 1996 USENIX Annual Technical Conference, pages 1–1,

Berkeley, CA, USA, 1996. USENIX Association.

David Teigland and Heinz Mauelshagen. Volume managers in linux. In Proceedings of USENIX 2001

Technical Conference, June 2001.

Chandramohan A. Thekkath, Timothy Mann, and Edward K. Lee. Frangipani: A Scalable Distributed

File System. In Proc. of the 16th Symposium on Operating Systems Principles (SOSP-97), volume

31,5 of Operating Systems Review, pages 224–237, New York, October 5–8 1997. ACM Press.

Stephen Tweedie. Ext3, journaling filesystem. In Presentation at Ottawa Linux Symposium, Ottawa

Congress Centre, Canada, July 2000.

Mustafa Uysal, Anurag Acharya, and Joel Saltz. Evaluation of Active Disks for Decision Support

Databases. In Proceedings of the Sixth International Symposium on High-Performance Computer

Architecture, pages 337–348, Toulouse, France, January 8–12, 2000. IEEE Computer Society TCCA.

Robbert van Renesse, Kenneth P. Birman, Roy Friedman, Mark Hayden, and David A. Karr. A Frame-

work for Protocol Composition in Horus. In Symposium on Principles of Distributed Computing,

pages 80–89, 1995.

BIBLIOGRAPHY 176

Alistair C. Veitch, Eric Riedel, Simon J. Towers, and John Wilkes. Towards Global Storage Management

and Data Placement. In Eighth IEEE Workshop on Hot Topics in Operating Systems (HotOS-VIII).

May 20–23, 2001, Schloss Elmau, Germany, pages 184–184, 1109 Spring Street, Suite 300, Silver

Spring, MD 20910, USA, 2001. IEEE Computer Society Press. ISBN 0-7695-1040-X.

Veritas. Flashsnap. http://eval.veritas.com/ downloads/ pro/ fsnap guide wp.pdf, a.

Veritas. Storage Foundation(TM). http://www.veritas.com/ Products/ www?c=product&refId=203, b.

Veritas. Volume Manager(TM). http://www.veritas.com/vmguided, c.

Werner Vogels, Dan Dumitriu, Ashutosh Agrawal, Teck Chia, and Katherine Guo. Scalability of the

Microsoft Cluster Service. In WINSYM’98: Proceedings of the 2nd conference on USENIX Windows

NT Symposium, Seattle, WA, USA, August 1998. USENIX Association.

Randolph Y. Wang, Thomas E. Anderson, and David A. Patterson. Virtual Log-Based File Systems

for a Programmable Disk. In Proceedings of Operating Systems Design and Implementation (OSDI),

pages 29–43, 1999.

Ralph O. Weber (Editor). Information Technology – SCSI Object-Based Storage Device Commands

(OSD), Revision 10. Technical Council Proposal Document T10/1355-D, Technical Committee T10,

July 2004.

Ralph O. Weber (Editor). Information Technology – SCSI Object-Based Storage Device Commands-2

(OSD-2), Revision 2. T10 Working Draft T10/1729-D, Technical Committee T10, July 2007.

Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Carlos Maltzahn. Ceph: A

Scalable, High-performance Distributed File System. In Proc. of the 7th Symposium on Operating

Systems Design and Implementation (OSDI’06), pages 307–320, Berkeley, CA, USA, 2006. USENIX

Association. ISBN 1-931971-47-1.

Brian S. White, Michael Walker, Marty Humphrey, and Andrew S. Grimshaw. LegionFS: a secure

and scalable file system supporting cross-domain high-performance applications. In Proc. of the

2001 ACM/IEEE conference on Supercomputing (Supercomputing’01), pages 59–59, New York, NY,

USA, 2001. ACM. ISBN 1-58113-293-X.

BIBLIOGRAPHY 177

John Wilkes. Traveling to Rome: QoS Specifications for Automated Storage System Management. In

Proceedings of the International Workshop on QoS (IWQoS’2001). Karlsruhe, Germany, June 2001.

John Wilkes, Richard A. Golding, Carl Staelin, and Tim Sullivan. The HP AutoRAID Hierarchical

Storage System. ACM Transactions on Computer Systems, 14(1):108–136, February 1996.

Jake Wires and Michael J. Feeley. Secure file system versioning at the block level. In EuroSys ’07:

Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer Systems 2007,

pages 203–215, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-636-3.

Theodore M. Wong, Richard A. Golding, Joseph S. Glider, Elizabeth Borowsky, Ralph A. Becker-

Szendy, Claudio Fleiner, Deepak R. Kenchammana-Hosekote, and Omer A. Zaki. Kybos: Self-

management for distributed brick-based storage. Technical Report RJ10356, IBM Research Division,

Almaden Research Center, 650 Harry Road, San Jose, CA, August 2005.

Xdd. Version 6.3, I/O Performance Inc. http://www.ioperformance.com.

Junfeng Yang, Paul Twohey, Dawson R. Engler, and Madanlal Musuvathi. Using Model Checking to

Find Serious File System Errors. In Proceedings of the 6th Symposium on Operating System Design

and Implementation (OSDI 2004), pages 273–288, December 6-8, 2004, San Francisco, California,

USA. USENIX Association, 2004.

H. Yokota. Performance and Reliability of Secondary Storage Systems. In Proceedings of the 4th

World Multiconference on Systemics, Cybernetics and Informatics (SCI2000), Invited Paper, pages

668–673, July 2000.

Erez Zadok and Jason Nieh. FiST: A Language for Stackable File Systems. In Proceedings of the 2000

USENIX Annual Technical Conference (USENIX-00), pages 55–70, Berkeley, CA, June 18–23 2000.

USENIX Association.

Seth Zirin and Intel Corp. Joe Bennett, Principal Engineers. Advanced Switching Overview.

http://download.intel.com/ netcomms/ as/ devcon as overview.pdf.

J. Ziv and A. Lempel. A Universal Algorithm for Sequential Data Compression. IEEE Transactions on

Information Theory, 23:337–343, May 1977.

