
Performance Evaluation of Commodity iSCSI-based Storage Systems

Dimitrios Xinidis†, Michail D. Flouris and Angelos Bilas†
Institute of Computer Science (ICS)

Foundation for Research and Technology - Hellas (FORTH)
Vassilika Vouton, P.O.Box 1385,
GR 711 10 Heraklion, Greece

{dxinid, flouris, bilas}@ics.forth.gr

Abstract

iSCSI is proposed as a possible solution to building future stor-
age systems. However, using iSCSI raises numerous questions
about its implications on system performance. This lack of un-
derstanding of system I/O behavior in modern and future systems
inhibits providing solutions at the architectural and system levels.
Our main goals in this work are to understand the behavior of
the application server (iSCSI initiator), to evaluate the overhead
introduced by iSCSI compared to systems with directly-attached
storage, and to provide insight about how future storage systems
may be improved.

We examine these questions in the context of commodity iSCSI
systems that can benefit most from using iSCSI. We use commodity
PCs with several disks as storage nodes and a Gigabit Ethernet
network as the storage network. On the application server side
we use a broad range of benchmarks and applications to evaluate
the impact of iSCSI on application and server performance. We
instrument the Linux kernel to provide detailed information about
I/O activity and the various overheads of kernel I/O layers.

Our analysis reveals how iSCSI affects application perfor-
mance and shows that building next generation, network-based
I/O architectures, requires optimizing I/O latency, reducing net-
work and buffer cache related processing in the host CPU, and
increasing the sheer network bandwidth to account for consolida-
tion of different types of traffic.

1. Introduction

Future storage systems are required to scale to large sizes due to
the amount of information that is being generated and the increas-
ing capacities and dropping prices of magnetic disks. Network-
attached, block-level storage, also called SAN-approach due to the
use of storage area networks (SANs), is proposed as one method
for addressing these issues. In this approach, large numbers of
magnetic disks are attached to a network through custom storage
controllers or general-purpose PCs and provide storage to appli-
cation servers. One of the main issues in this approach is the pro-
tocol used for gaining access from application servers to remote
storage over the network. Traditionally, specialized interconnec-
tion networks and protocols have been developed for this purpose.

†Also, with the Department of Computer Science, University
of Crete, P.O. Box 2208, Heraklion, GR 71409, Greece.

For instance, SCSI [7] and Fiber Channel [6] are among the most
popular such interconnects and associated protocols.

Although these approaches have been used and are still used
extensively for building storage area networks, many problems
have emerged due to changes in underlying technologies. First,
these interconnects use custom network components and thus are
not able to take advantage of the steep technology curves and
dropping costs of commodity, IP-based networks. Moreover, the
fact that they require specialized equipment leads to building stor-
age systems and data centers with multiple interconnects. This on
one hand does not allow for dynamic sharing of resources since
they need to be partitioned statically based on the type of inter-
connect servers are attached to and, on the other hand, increases
significantly management overhead, since multiple interconnects
need to be maintained and optimized.

Thus, there is recently a lot of interest in examining alternative
solutions that would both be able to reduce the cost of the underly-
ing equipment and management as well as better follow the tech-
nology curves of commodity networking components. One such
approach is using IP-type networks and tunneling storage proto-
cols on top of IP to leverage the installed base of equipment as
well as the increased bandwidth available, especially of local area
networks. It is currently projected that 10 Gigabit Ethernet inter-
connects will soon become commodity providing at least as much
bandwidth as is (and will be available) in storage area networks.

iSCSI [13] is a storage networking standard that provides a
transport layer for SCSI [7] commands over TCP/IP. The main
premise of iSCSI is that it can provide a familiar API and proto-
col (SCSI) to the application and storage nodes utilizing low-cost,
commodity IP infrastructure and taking advantage of the technol-
ogy curves. Thus, it functions as a bridge between the popular
SCSI storage protocol and the popular TCP/IP local area network
family of protocols. With the advent of 1 and 10 Gigabit Ether-
net networks, there is increased interest in using iSCSI for local
access to storage in multi-tier server architectures in data centers.

Although adoption of iSCSI appears appealing, it is not clear
at this point what is its impact on system performance. The intro-
duction of both a new type of interconnect as well as a number of
protocol layers in the I/O protocol stack may introduce significant
overheads. Previous studies on iSCSI performance issues have
revealed the adverse effect of TCP processing, however, do not
provide a detailed breakdown of kernel overheads in the various
components of the I/O path. This lack of understanding of how
iSCSI impacts I/O path overheads inhibits solutions at the system
and architectural levels.

101

Our work aims to examine iSCSI-related overheads in the I/O
path. We investigate the iSCSI overheads associated with stor-
age systems built out of commodity PCs and commodity Gigabit
Ethernet interconnects. Although iSCSI may be used with cus-
tomized systems as well, our storage nodes are commodity PCs
with multiple (5-8) disks. Given today’s technologies such nodes
may host about 1.5-2.5 TBytes of storage and in excess of 10
TBytes in the near future. Storage nodes are connected with appli-
cation servers and application clients through a Gigabit Ethernet
network. In our evaluation we use both microbenchmarks as well
as real applications to examine the impact of iSCSI-based stor-
age compared to directly-attached disks. We instrument the Linux
kernel and in particular the block-level I/O paths to gain detailed
information about I/O activity and assess both application- and
system-level statistics.

We find that the significant overheads introduced by iSCSI has
different effect on different applications. Postmark is sensitive
to increased latencies and is not affected by the reduction in I/O
throughput or the increase in CPU cycles. TPC-H is sensitive to
I/O throughput and CPU cycles. Finally, Spec-SFS is hurt by re-
duced network bandwidth (I/O throughput) and the fact that the
same network is used to carry both client-server NFS traffic as
well as iSCSI I/O traffic. On the other hand, iSCSI allows us to
easily scale the amount of storage attached to a server and thus,
recover most of the performance loss. Increasing the number of
disks in TPC-H is able to outperform the base, direct configura-
tion. Similarly, increasing the I/O cache in iSCSI has similar re-
sults for Postmark performance. Finally, our examination of ker-
nel I/O path overheads shows that applications can benefit signifi-
cantly from offloading not only TCP processing and interrupt cost
as previous work has shown, but system buffer cache processing
as well.

The rest of this paper is organized as follows. In Section 2
we present our experimental platform and in Section 3 we dis-
cuss our methodology. Section 4 presents our results and analysis
of system behavior. Finally, Section 5 presents related work and
Section 6 draws our conclusions.

2. Platform

In this section we present our testbed and we introduce the work-
loads we use in our work.

2.1. Experimental testbed

Our iSCSI testbed consists of 16 dual-processor (SMP) com-
modity x86 systems. Each system is equipped with two Athlon
MP2200 processors at 1.8GHz, 512 MBytes of RAM and a
Gigabyte GA-7DPXDW motherboard with the AMD-760MPX
chipset. The nodes are connected both with a 100MBit/s (In-
tel 82557/8/9 adapter) and a 1GBit/s (D-Link DGE550T adapter)
Ethernet network. All nodes are connected on a single 24-port
switch (D-Link DGS-1024) with a 48 GBit/s backplane. The
100MBit network is used only for management purposes. All
traffic related to our storage experiments uses the GBit Ethernet
network.

The AMD-760MPX chipset supports two PCI 64-bit/66 MHz
bus slots, three PCI 32-bit/33 MHz slots and two on board IDE
controllers, a system IDE controller with two ATA-100 channels
for up to four devices and an IDE Promise PDC20276 RAID con-
troller with two ATA-100 channels for up to four devices. It is
important to note that the IDE controllers are connected through a
single PCI 32-bit/33 MHz link to the memory, which limits the ag-
gregate IDE bandwidth to about 120 MBytes/sec. Each node has

an 80-GByte system disk (Western Digital WD800BB-00CAA1,
2MB cache) connected to the system IDE controller. Three of the
system nodes are equipped with five additional disks of the same
model. Three of the disks are connected to the system IDE con-
troller and the other two to the Promise IDE RAID controller. All
disks (except the system disk) are configured in RAID-0 mode us-
ing the Linux MD driver (software RAID). The hardware RAID
functionality of the Promise controller is not used. Since we are
interested in examining commodity platforms, we use IDE/ATA
disks. However, in the case of iSCSI we need to use the SCSI I/O
hierarchy in the Linux kernel to generate SCSI commands for the
iSCSI modules.

The operating system we use is Linux RedHat 9.0, with a ker-
nel version 2.4.23-pre5 [2]. Not all Linux kernel versions provide
support for fast disk I/O. In versions 2.4.19 to 2.4.22 a bug in the
kernel driver for the AMD IDE chipset disables support for fast
data transfers and results in low raw disk throughput. According
to our measurements, versions up to 2.4.18 or later than version
2.4.22 offer the expected disk I/O performance. In our work we
use version 2.4.23-pre5 for all the experiments. Furthermore, we
use the Linux hdparm utility to set each disk to 32-bit I/O and to
UDMA100 mode. These result in an increase of maximum disk
throughput from 25 to 45 MBytes/s.

2.2. iSCSI implementation

During the course of this project, we have experimented with var-
ious Linux iSCSI implementations [19, 3, 8]. [8] suffers from low
performance, as we verified through several microbenchmark ex-
periments. On the other hand, [19] requires SCSI disks on the
target side. This makes it unsuitable, since our goal is to build
commodity storage nodes based on inexpensive IDE disk technol-
ogy.

The Intel iSCSI implementation [3] we choose for our work
has the fewest limitations. Mainly, that it supports only non-SMP
kernels, so our kernel is built with no SMP support (i.e. only one
processor is used). Secondly, we found that the Intel iSCSI target
was originally developed for block devices up to 4 GBytes (32-bit
byte addressing). Since we would like to build storage nodes with
significantly higher capacity (currently 5x80 GBytes/node) and to
experiment with datasets that exceed 2 GBytes, we have modified
the iSCSI target to support 32-bit block addressing, which is ad-
equate for our purposes1. In the Intel implementation, the iSCSI
target runs at user level, whereas the iSCSI initiator runs in the
kernel.

2.3. Workload

To examine system behavior we use a set of microbenchmarks
and applications: IOmeter [14], a workload generator that has
been used extensively for basic evaluation of I/O subsystems,
Postmark [15], a benchmark that emulates the I/O behavior of
an e-Mail server, the TPC-H [22] decision support workload on
MySQL [23], a popular open-source database, and Spec-SFS [20],
a widely-accepted NFS server benchmark. Next we examine each
benchmark in more detail.

1The main issue is that the iSCSI target, which is implemented
in user space, opens the target devices with an lseek call that
repositions the file offset. The specific call used, allows only 32-
bit offsets and needs to be replaced with the llseek call that
handles 64-bit offsets.

102

IOmeter: IOmeter [14] is a configurable workload generator.
The parameters we vary are, access pattern, mix of read and write
operations, number of outstanding requests, and block size. We
choose four workloads that represent extreme access patterns, all
sequential or all random, 100% reads or writes, and two mixed
workloads with 70-30% reads and writes. Finally, for each work-
load we vary the number of outstanding requests between 1 and
16 and the block size between 512 Bytes and 128 KBytes. The re-
sults we report are with 16 outstanding I/O requests, unless stated
otherwise. In our discussion we use the average throughput, the
average response time for each I/O request, and the total CPU uti-
lization.

PostMark: PostMark [15] simulates the behavior of an Inter-
net mail server. PostMark creates a large number of small files
(message folders) that are constantly updated (as new mail mes-
sages arrive). PostMark can be configured in two ways [15]; The
number of files to create and the total number of transactions
to perform on this set of files. In our experiments we use in-
puts 50K/50K, 50K/100K, 100K/100K, and 100K/200K. A new
filesystem is created with “mkfs” before each experiment to en-
sure that filesystem state does not affect the results.

MySQL: MySQL is a popular open-source database [23]. To
examine the behavior of this important class of applications we
use the TPC-H workload [22]. The TPC-H benchmark models
a decision support system and consists of a suite of 22 business-
oriented ad-hoc queries and concurrent data modifications. In our
work we use TPC-H queries 1-3,5-8,11,12,14 and 19. Since we
need to perform multiple runs for each query, we omit the rest
of the queries that take a long time to complete (in the order of
hours). A new filesystem is also created with “mkfs” and the
database is reloaded before each TPC-H experiment (each exper-
iment includes all the queries we use).

Spec-SFS: Spec SFS97 R1 V3.0 [20] measures the throughput
and response time of an NFS server. The first iteration starts with
a total NFS server load of 500 operations/sec, while each consec-
utive iteration increases the load by 100 operations/sec until the
server is saturated. In our work we use total response time and
response rate for NFS operations.

3. Methodology

In our work we are interested in examining both application-
specific as well as system-wide metrics. In particular, we are in-
terested in presenting detailed breakdowns of system I/O activity
in each kernel layer.

3.1. Kernel Instrumentation

To obtain the breakdown of kernel time in various layers we in-
strument the Linux kernel source with our own stop-watch timers.
More details about our kernel-level instrumentation can be found
in [24]. Our timer subsystem uses the processor cycle counters to
get accurate and fast timing measurements at clock-cycle granu-
larity. The instrumented kernel source contains several stop-watch
timers that measure processor cycles between specific points in the
kernel source.

In our instrumentation we have placed timers in the borders of
consecutive layers of the I/O path. Thus, starting from the high-
level read() and write() system calls we are able to measure
times spent in each layer as an I/O call is forwarded from the user

VFS / Ext3
Filesystem Buffer Cache

SR
(Cdroms)

ST
(Tapes)

SD
(Disks)

SCSI Unifying Layer

Hardware
Drivers (iSCSI, ide−scsi)

Pseudo Drivers

NIC(GigEth)

I/O System Calls Kernel Space

Lower

Mid

Upper

SCSI Subsystem

User Space

TCP/IP

Figure 1. Kernel Layer Hierarchy.

process to the actual disk device driver (or network device driver
in the case of an iSCSI device).

Figure 1 illustrates the kernel layers that are of interest for
the iSCSI call path. The “system call” layer is the interface to
the user-space world. The I/O system calls use VFS (or generic
filesystem) calls to perform their tasks, while individual filesys-
tems, such as ext3, plug their code into the VFS handlers. The
buffer cache code is used for managing memory pages that cache
file inodes or disk blocks. The buffer cache functions are used
both by VFS and the lower-level filesystem code sometimes in a
recursive manner. Thus, it is generally hard to distinguish sys-
tem time spent in VFS, Ext3 and buffer cache code since their
calls are interdependent. However, in our analysis we do not aim
at a detailed analysis of the filesystem time, but instead on under-
standing iSCSI-related overheads. For this reason we measure two
separate times for the VFS/Ext3 layer: (a) the time for read/write
calls, labeled as “FS: read/write” in our breakdown graphs and
(b) the time for performing file and directory operations (e.g. cre-
ate, delete, locate), labeled as “FS: File Mgmt”. These two com-
ponents are possible to distinguish because they initiate through
different system calls.

Below the filesystem level, is the SCSI hierarchy that consists
of three layers: upper, middle, and lower SCSI layers. We com-
bine the time spent by the upper and middle layers in a single
component, labeled as “SCSI”. The low-level SCSI driver is the
iSCSI module, which we time separately. We also quantify what
happens below the iSCSI layer, namely in the TCP/IP layer and
the network device driver and the associated interrupt handler (the
DL2k module in our systems). Our measurements of the TCP/IP
stack, labeled “TCP”, contain all the time spent in both the send
and receive paths only accounting for the iSCSI traffic. Finally,
we measure the time spent in the network device interrupt handler
separately (labeled “NIC IRQ”).

It is important to note where in the kernel layers we have mem-
ory copies of data related to iSCSI traffic. There are two such
cases: one in the “filesystem read/write” component, where data
is copied between the kernel’s buffer cache and the application
buffer, and secondly in the “TCP” layer, where data is copied be-
tween the NIC’s buffer and kernel memory. These two copies
occur for all data stored on iSCSI storage. In the directly-attached
disk case, the NIC copy does not occur and is replaced with a
DMA to the hard disk buffer.

3.2. System Configurations

For our evaluation we have examined three system configurations.

103

 0

 20

 40

 60

 80

 100

 4 16 64 256 1K 4K 16K 64K 256K 1M

T
hr

ou
gh

pu
t (

M
B

yt
es

/s
ec

)

Buffer Size (Bytes)

TTCP Network Throughput (TCP Protocol)

TCP/IP Throughput (Switch)
TCP/IP Throughput (Back2Back)

(a) TCP Throughput.

 0

 2

 4

 6

 8

 10

 12

 4 16 64 256 1K 4K 16K 64K 256K 1M

L
at

en
cy

 p
er

 b
uf

fe
r

(m
ill

is
ec

on
ds

)

Buffer Size (Bytes)

TTCP Network Latency (TCP Protocol)

TCP/IP Latency (Switch)
TCP/IP Latency (Back2Back)

(b) TCP Latency.

Figure 2. TCP/IP throughput and latency over D-Link
DGE550T Gigabit Ethernet NIC, measured with ttcp.

(A) Direct-attached (or Local) Disk. Five disks directly attached
to the application server.

(B) iSCSIx1. One storage node with five disks connected to the
application server through Gigabit Ethernet. The storage
node (iSCSI target) exports a single RAID-0 volume through
iSCSI.

(C) iSCSIx3. Three storage nodes (iSCSI targets) with five disks
each connected to the application server through Gigabit
Ethernet. Each storage node exports a single RAID-0 vol-
ume through iSCSI. The three iSCSI volumes are concate-
nated with software RAID-0 on the application server.

4. Results and Analysis

Next we present our experimental results and analysis.

4.1. Basic measurements

Figure 2 shows the throughput and latency of the Gigabit Ethernet
network we use, measured with ttcp. The system achieves a
maximum bandwidth of about 800 MBit/s at 128K packet sizes.
Our system configuration does not use jumbo frames since many
commodity network interfaces and switches do not support this
feature.

Figure 3 shows the basic throughput for the disks and con-
trollers we use, measured with IOmeter. We see that each disk is
capable of 45 MBytes/s throughput for sequential read accesses
and about 20 MBytes/s for sequential write accesses. A mix
of 70% read and 30% write operations achieves also about 20
MBytes/s throughput. Each IDE controller can transfer about 120
MBytes/s. As mentioned in Section 2, the PCI bus in our sys-
tems is a 33MHz/32Bit bus, resulting in a theoretical peak of 125
MBytes/s. Given that we use two IDE controllers in each system
we expect that the maximum I/O throughput in each node is lim-
ited by the PCI bus. CPU utilization and response time for a single
disk are depicted in Figure 3(a).

Finally, Figure 3 show throughput, CPU utilization and re-
sponse time for iSCSI when using a RAM-disk on the iSCSI tar-
get with one outstanding I/O request. We see that the initiator
reaches 90% CPU utilization for reads and about 80% for writes
for 1K or larger I/O request sizes. Thus, when using iSCSI I/O
throughput is limited by network bandwidth to about 50 MBytes/s
(with 16 KByte requests) at a system utilization between 80-90%.
Minimum response time (512 Byte requests) is less than a 100 µs.

4.2. Microbenchmarks

First, we look at IOmeter to understand basic aspects of the lo-
cal and iSCSI configurations. Figure 4 shows that for directly-
attached disks and sequential read requests, maximum throughput
approaches 120 MBytes/s, limited by the PCI bus in our systems.
For write requests, maximum throughput is about 50 MBytes/s.
The read performance is higher than write due to the aggressive
prefetching (read-ahead) the software RAID driver performs. In
the iSCSIx1 configuration, maximum throughput is limited to 40
MBytes/s and maximum read throughput is limited to about 25
MBytes/s. The writes in the iSCSI configuration are faster be-
cause of the write-back cache on the iSCSI target nodes. Reads,
however, are slower because data must be read from the remote
disk. In both cases, maximum throughput is achieved at 4 or
8KByte I/O requests. When using 70-30 read-write mix, through-
put is about 50 MBytes/s for the local case and about 20 MBytes/s
for the iSCSIx1 configuration. iSCSIx3 achieves about the same
write throughput as iSCSI, but does much better in reads. This is
due to the larger buffer cache that three nodes have compared to
one node in the iSCSIx1 case. Random access patterns exhibit a
significantly lower throughput in all cases.

In terms of response time (Figure 5), we see that the local and
iSCSIx1 configurations have similar response times. In contrast,
the iSCSIx3 setup shows higher latencies for larger block size,
mainly due to network congestion from the three iSCSI connec-
tions. Finally, Figure 6 shows the CPU utilization in the initia-
tor (application server). Maximum CPU utilization with sequen-
tial requests is between 75-90% in the local case and between
60-70% in the iSCSIx1 case depending on I/O request size. We
note that, given the achievable throughput, iSCSIx1 utilization is
higher compared to the local configuration. iSCSIx3 shows very
high CPU usage, especially in the case of sequential reads. This
is due to increased network throughput, which results in high net-
work processing times (including memory copies of data from the
NIC).

4.3. Application Performance

4.3.1. PostMark

Overall, we find that Postmark is sensitive to I/O latency and
iSCSI reduces performance up to 20%. For the same reason,
however, in iSCSIx3, performance improves up to 80% due to

104

512 2048 4096 8192 16384

block size

0

10

20

30

40

50

60

M
B

ps100Reads-100Sequential
100Writes-100Sequential
70Reads-30Writes-100Sequential

(a) Throughput

512 2048 4096 8192 16384

block size

100

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
ic

ro
 s

ec
on

ds
)

(b) Average Response Time

512 2048 4096 8192 16384

Block size

0

10

20

30

40

50

60

70

80

90

100

%
 C

P
U

 U
ti

liz
at

io
n

(c) Cpu Utilization

Figure 3. IOmeter statistics for a single disk vs. an iSCSI RAM-disk. Dotted lines denote the single disk and solid the iSCSI
RAM-disk

Table 1. Postmark results. Throughput is in KBytes/sec.
Input Size Tx/sec Read Write

(#files/#trans) Throughput Throughput

50K/50K 204 272.54 855.81
50K/100K 165 302.93 627.81
100K/100K 81 126.52 394.30
100K/200K 74 150.61 312.88

TX/s RT
W

T
TX/s RT

W
T

TX/s RT
W

T
TX/s RT

W
T

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

N
or

m
al

iz
ed

 r
at

e

iSCSIx1
iSCSIx3
iSCSIx3 NBC

(a)

Figure 7. Postmark results normalized to the direct config-
uration. Each graph represents one input size. Each group
of bars refers to one application metric: Transactions/s,
Read Throughput, and Write Throughput. Each bar refers
to one system configuration: direct, iSCSIx1, iSCSIx3 and
iSCSIx3 without buffer cache (left to right).

the increased target buffer cache that reduces I/O latency. Also,
iSCSIx3 is able to saturate the host CPU, something that is not
possible in the direct and iSCSI configurations. Next we present a
more detailed analysis.

Table 1 shows the performance of PostMark in each of the
three system configurations. We notice that using iSCSI reduces
transaction rate between 0% and 20% compared to the direct con-
figuration. In iSCSIx3 all application metrics improve compared
to direct by 5% to 80%. Moreover, we note that the largest im-
provement occurs in the configurations that use a larger number
of transactions for a given number of files. This is due to the fact
that when increasing the number of transactions and keeping the
number of files constant the larger iSCSIx3 target buffer cache
becomes more effective.

Figure 8 shows the execution time breakdown for PostMark.
We see that system time drops by 10-15% in iSCSIx1, compared
to the direct case. This is due to the increased response time in
iSCSIx1. PostMark performs synchronous I/O and thus, is sensi-
tive to I/O response time. In iSCSIx3, response time improves due
to the larger target cache, which results in higher system utiliza-
tion that reaches almost 100% for all input sizes. To verify this we
disable the buffer cache in the Linux kernel in all iSCSI targets.

Figure 7 shows that PostMark performance drops dramatically,
even below the direct configuration (Table 1). Thus, PostMark
benefits mostly from the presence of the increased I/O subsystem
cache in the iSCSI and iSCSIx3 configurations, demonstrating one
of the advantages of using iSCSI.

50K F 50k T

50K F 100K T

100K F 100K T

100 F 200 T
0

10
20
30
40
50
60
70
80
90

100

P
er

ce
n

ta
ge

%idle
%sys
%usr

50
K
 F
 5
0k

 T

50
K
 F
 1
00

K
 T

10
0K

 F
 1
00

K
 T

10
0
F
20

0
T

0

100

200

300

I
/O

 O
p

e
r
a
ti

o
n

s
 /

 s
e
c

Read
Write

(a) (b)

Figure 8. Postmark execution time breakdown and I/O
rate. The left bar in each pair refers to the direct configu-
ration and the middle bar to the iSCSIx1 configuration and
the right to the iSCSIx3.

Figure 8 shows the I/O rate at the initiator (application server)
for each system configuration and input size. This rate shows the
number of requests that reach the physical disks in the direct con-
figuration and the iSCSI layer in iSCSIx1 and iSCSIx3. The I/O
rate in PostMark follows the same pattern as the transaction rate
reported by the application.

4.3.2. MySQL

Overall, TCP-H is sensitive to disk I/O throughput and CPU uti-
lization. Thus, iSCSI reduces performance by up to 95%. How-
ever, iSCSIx3 is able to scale the number of disks (and the total
size of I/O cache). This improves disk I/O throughput and reduces
the gap with the direct configuration, in some cases even improv-
ing performance up to 25% (Q14). Next we discuss our results in
more detail.

Table 2 and Figure 9 show the execution time for the TPC-
H queries we use. We see that using iSCSI increases execution
time between 1% (Q8) and 95% (Q6). In the iSCSIx3 configu-
ration, execution time reduces significantly compared to the iSC-
SIx1 case and is within 40% of the direct case (and usually within
20%). Similarly to PostMark, iSCSIx3 is able to recover the per-
formance degradation of using iSCSI with a significant increase
in resources.

105

512 8192 16384 32768

Block size

0

20

40

60

80

100

120

140

M
B

yt
es

/s
ec

100Reads-100Random
100Reads-100Sequential
100Writes-100Random
100Writes-100Sequential
70Reads-30Writes-100Random
70Reads-30Writes-100Sequential

(a) Directly-attached disks

512 8192 16384 32768

Block size

0

20

40

60

M
B

yt
es

/s
ec

(b) iSCSIx1

512 8192 16384 32768

Block size

0

20

40

60

M
B

yt
es

/s
ec

(c) iSCSIx3

Figure 4. IOmeter throughput.

512 8192 16384 32768

Block size

100

1000

10000

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
ic

ro
 s

ec
s)

100Reads-100Random
100Reads-100Sequential
100Writes-100Random
100Writes-100Sequential
70Reads-30Writes-100Random
70Reads-30Writes-100Sequential

(a) Directly-attached disks

512 8192 16384 32768

Block size

100

1000

10000

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
ic

ro
 s

ec
s)

(b) iSCSIx1

512 8192 16384 32768

Block size

1000

10000

100000

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
ic

ro
 s

ec
s)

(c) iSCSIx3

Figure 5. IOmeter average I/O response time.

5122048 8192 16384 32768 65536

Block size

0

10

20

30

40

50

60

70

80

90

100

%
 C

P
U

 U
ti

liz
at

io
n

100Reads-100Random
100Reads-100Sequential
100Writes-100Random
100Writes-100Sequential
70Reads-30Writes-100Random
70Reads-30Writes-100Sequential

(a) Directly-attached disks

5122048 8192 16384 32768 65536

Block size

0

10

20

30

40

50

60

70

80

90

100

%
 C

P
U

 U
ti

liz
at

io
n

(b) iSCSIx1

5122048 8192 16384 32768 65536

Block size

0

10

20

30

40

50

60

70

80

90

100

%
 C

P
U

 U
ti

liz
at

io
n
(c) iSCSIx3

Figure 6. IOmeter CPU utilization.

Table 2. TPC-H query execution time in MySQL (in sec-
onds).

Query q1 q3 q5 q6 q7
Exec time (s) 77.34 54.91 60.73 10.91 56.89
Query q8 q11 q12 q14 q19
Exec time (s) 147.97 26.92 15.75 24.30 17.18

To distinguish whether the performance improvement with
iSCSIx3 is due to the increased target cache or the larger num-
ber of disks we also run experiments with the iSCSIx3 configu-
ration where the target buffer is disabled (Figure 9). We see that,
except for query Q14, in all cases the performance degradation
is fairly small (within 7%) which suggests that TPC-H benefits
mostly from the increased number of disks under iSCSIx3.

Figure 10 shows the execution time breakdown for each query.
First, we note that between direct and iSCSIx1 system time in-
creases by up to 200% (Q14) which indicates that iSCSI intro-
duces a significant overhead. Moreover, user time reduces in all
queries and by up to 50% (Q6) indicating that either system time
takes up useful cycles from the host CPU or that the increase in
iSCSI response time results in lower CPU utilization.

Similarly to iSCSIx1, iSCSIx3 exhibits a higher user time
compared to the direct configuration for all queries where it per-
forms better. Idle time in iSCSIx3 is almost 0% in all queries.

Q
1

Q
3

Q
5

Q
6

Q
7

Q
8

Q
11

Q
12

Q
14

Q
19

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

N
o

r
m

a
l
i
z
e
d

T

i
m

e

Figure 9. TPC-H execution time normalized to the direct
configuration. Each group of bars refers to one query; Each
bar refers to one system configuration: direct, iSCSIx1, and
iSCSIx3, and iSCSIx3 without target cache (left to right).

Thus, application server CPU is saturated and further improve-
ments in application performance may only be achieved with low-
ering CPU utilization.

Finally, Figure 10 shows the I/O rate for each configuration.
We see that the large differences in user time, especially in queries
Q6, Q12, and Q19 are reflected to differences in the I/O rate.

106

q1 q3 q5 q6 q7 q8 q1
1

q1
2

q1
4

q1
9

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

%idle
%sys
%usr

(a) Execution Time Breakdown

q1 q3 q5 q6 q7 q8 q1
1

q1
2

q1
4

q1
9

TPC-H Queries

0

100

200

300

400

500

600

700

I/
O

 O
pe

ra
ti

on
s

/ s
ec

Reads
Writes

(b) I/O rate (IOs/s)

Figure 10. TPC-H I/O rate and execution time breakdown.
The left bar in each pair refers to the direct configuration,
the middle bar to the iSCSIx1 configuration and the right to
iSCSIx3.

4.3.3. Spec-SFS

Overall, we find that Spec-SFS is hurt by mixing client-server and
iSCSI traffic over the same network. Although consolidating all
traffic on top of a single network is considered an advantage of
iSCSI, this has an adverse effect on Spec-SFS performance.

Figure 11 shows that the iSCSIx1 configuration saturates faster
than the direct configuration at 600 I/O requests/s, as opposed to
700 I/O requests/s (14% difference). Moreover, I/O response time
is larger in the iSCSIx1 configuration for all I/O request loads by
about 25% to 40%. However, the I/O rate is similar in both the
direct and iSCSI cases for the the loads that do not saturate iSCSI
(up to 600 IOs/s). The iSCSIx3 configuration behaves similarly to
iSCSIx1, however, I/O response time improves and is within 25%
of the direct case in most cases.

300 400 500 600 700 800 900 1000
Request Load

0
1
2
3
4
5
6
7
8
9

10

M
s
e
c
/O

p

Local
iSCSIx1
iSCSIx3

300 400 500 600 700 800 900 1000
Request Load

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700

S
e
r
v

e
d

 O
p

s
/s

e
c

(a) (b)

Figure 11. Spec-SFS results.

The execution time breakdown for Spec-SFS (Figure 11)
shows that the Spec-SFS server is idle most of the time, which
suggests that the network bandwidth of the Spec-SFS server is
limiting system performance. Note that all systems in this exper-
iment are attached to the same Gigabit Ethernet switch, meaning
that both Spec-SFS and iSCSI traffic traverse on the same link that
connects the Spec-SFS server (iSCSI initiator) to the switch. For
this reason, in the iSCSIx1 and iSCSIx3 configurations the system

saturates at a lower number of I/O requests, since using iSCSI in-
creases the traffic on the network.

4.4. System Overhead Breakdown

Next we examine the overhead introduced by iSCSI in the I/O
protocol stack.

50KF_50KT

50KF_100KT

100KF_100KT

100KF_200KT
0

10
20
30
40
50
60
70
80
90

100

P
er

ce
nt

ag
e %NIC IRQ

%TCP
% iSCSI + SCSI
% FS: Read/Write
% FS: File Mgmt
% Other

50KF_50KT

50KF_100KT
0

10
20
30
40
50
60
70
80
90

100

Pe
rc

en
ta

ge

(a) (b)

Figure 12. Postmark system time breakdowns with and
without (NBC) buffer cache in the storage targets. Each
group of bars refers to one system configuration: direct
(left), iSCSIx1 (middle), and iSCSIx3 (right).

q
1

q
3

q
5

q
6

q
7

q
8

q
1
1

q
1
2

q
1
4

q
1
9

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
n

ta
ge

%NIC IRQ
%TCP
% iSCSI + SCSI
% FS: Read/Write
% FS: File Mgmt
% Other

q
1

q
3

q
5

q
6

q
7

q
8

q
1
1

q
1
2

q
1
4

q
1
9

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
n

ta
g

e

%NIC IRQ
%TCP
% iSCSI + SCSI
% FS: Read/Write
% FS: File Mgmt
% Other

(a) (b)

Figure 13. TPC-H system time breakdowns with and with-
out (NBC) buffer cache in the storage targets. Each group
of bars refers to one system configuration: direct (left),
iSCSIx1 (middle), and iSCSIx3 (right).

Figure 12(a) and 13(a) shows the breakdown of system time
in the major components of the I/O stack (Figure 1)2. We see
that in PostMark most (90%-95%) of the system time is spent
in the filesystem component. This is due to the fact that Post-
Mark represents mail folders as directories and writes mail mes-
sages to separate files. Thus, each mail operation results in (mul-
tiple) file and directory operations (open, close, search,
delete, create) that account for most of the system over-
head.

In TPC-H queries can be divided in two categories: (i) Queries
where overheads related to the block-level I/O stack are between
30%-80%. In this category belong Q3, Q5, Q6, Q7, Q12, Q14,
and Q19. (ii) Queries where block I/O-related overheads are low
(Q1, Q8, Q11). In all cases, the file management overhead is min-
imal, because during query execution the only file operations that
take place are read and write operations that are passed directly to
the block I/O hierarchy. On the other hand, buffer cache manage-
ment is in many cases a significant component of system time (up
to 80%).

In terms of the block I/O stack, the overhead is divided almost
equally between block I/O and network components. The ma-

2The negative components in some bars are due to errors in
our measurements, which, however, do not affect our results.

107

jor components of the block I/O stack involved in the I/O path is
the buffer cache management (between 15% and 70% of system
time). The major network components are the send and receive
paths of the TCP/IP stack (between 10% and 65% of system time)
and the NIC interrupt handler (between 5% and 20% of system
time).

Thus, we see that a significant part of the I/O overhead for
TCP-H is in the block-level I/O hierarchy and that using iSCSI
has a significant impact due to TCP and NIC interrupt handler
overheads. Also, when comparing iSCSIx3 to iSCSIx1 we see that
block-level I/O overheads increase significantly and up to 20%.

When disabling the buffer cache in all targets in the iSCSIx3
configuration (Figure 13(b)) trends remain the same as before,
since TPC-H is not affected significantly by the available target
cache size.

Finally, Spec-SFS exhibits very little system time in the ini-
tiator (Spec-SFS server) and thus, we do not examine the related
breakdowns.

Overall, we see that the most significant kernel overheads in
the I/O path are not only TCP and interrupt processing, as previous
work has shown, but buffer cache processing as well. This sug-
gests that novel I/O architectures should not only consider TCP-
related costs, but buffer cache processing as well.

5. Related Work

Recently and due to the increasing importance of scaling storage
subsystems and reducing system costs, there have been a num-
ber of efforts to build efficient iSCSI implementations and also to
evaluate various aspects of iSCSI.

A number of iSCSI implementations are currently available [3,
8, 19, 12, 1, 9, 4, 25]. As mentioned in our work we use [3] after
examining most of the publicly available systems.

The authors in [18] evaluate the performance of iSCSI when
used for storage outsourcing. Similarly to our work, the au-
thors use both microbenchmarks and real applications (TPC-C and
Postmark). However, unlike our work they focus on network is-
sues. They examine the impact of latency on application perfor-
mance and how caching can be used to hide network latencies.
The authors in [5] examine the performance of iSCSI in three se-
tups: An optimized, commercial-grade back-end in a SAN envi-
ronment, a commodity-type back-end in SAN environment, and a
commodity-type back-end in a WAN environment. They perform
high-level experiments and examine system throughput with mi-
crobenchmarks. The authors in [16] use simulation to examine the
impact of iSCSI and network parameters on iSCSI performance.
They only examine throughput of a simple test and the consider
iSCSI PDU size and network Maximum Segment Size, TCP Win-
dow Size, and Link Delay. The authors in [10] present the design
and implementation of iSCSI for Linux and perform preliminary
evaluation of their system with a simple microbenchmark. The au-
thors in [11] examine the impact of TCP Window Size and iSCSI
request size for LAN, MAN, and WAN environments. The au-
thors find that the default TCP parameters are inappropriate for
high-speed MAN and WAN environments and that tuning of these
layers is required.

In contrast, our work focuses on the impact of iSCSI on ap-
plication server performance and we examine in detail, by instru-
menting the Linux kernel, system (kernel) overheads introduced
by iSCSI. We also examine how adding system resources in an
iSCSI configuration impacts application and server performance.

The authors in [17] also examine the impact of iSCSI on ap-
plication server performance. They use a simple microbenchmark

directly on top of block-level storage or through NFS. Similarly
to our results they find that iSCSI impacts system behavior sig-
nificantly and that Ethernet interrupt cost is the most significant
source of overhead. Our results show similar behavior for the
network-related costs. However, we find that other, iSCSI-related
costs can also be very high when using real applications. The au-
thors in [17] conclude that using jumbo frames reduces interrupt
overhead by about 50% but state that this may not be a practical
option in real systems where not all components in the network
path may support jumbo frames. In our work, we do not consider
Jumbo frames, since we also feel that this may not be representa-
tive of practical setups.

The authors in [21] discuss an implementation of iSCSI that
avoids a copy on commodity network adapters. They use sim-
ple microbenchmarks to examine the performance of their imple-
mentation and find that it reduces CPU utilization from 39.4% to
30.8% for reads and that it does not have a significant impact for
reads.

6. Conclusions

Storage systems are currently undergoing major transformations,
mainly due to the increasing disk capacities and network band-
width as well as due to dropping component prices. Various forms
of networked storage are proposed as candidates for future stor-
age systems. One issue in this direction is the storage protocol
that will be used for accessing remote storage from application
servers. iSCSI emerges as one of the key protocols. Although
it has numerous advantages, such as the usage of commodity IP-
based infrastructure and thus, reduced cost and management ef-
fort, there are numerous questions associated with the impact of
iSCSI on system performance.

In this paper we evaluate the performance of commodity iSCSI
storage systems and compare it with directly attached storage. We
use a public domain iSCSI implementation [3] and a set of real-life
applications to examine the impact of iSCSI on end-application
performance.

In summary, we see that using iSCSI without increasing sys-
tem resources compared to a local configuration has a significant
impact in all applications we examine. However, the impact of
iSCSI differs in each case. Postmark is sensitive to increased
I/O latency, TPC-H is affected by reduced I/O throughput and in-
creased CPU cycles, and Spec-SFS by the sharing of one network
between both client-server as well as iSCSI I/O traffic.

iSCSIx3 is able to scale system resources and recover and
in some cases improve system performance. Postmark benefits
from the increased target buffer cache, TPC-H by the increased
number of disks (and to a lesser extend by the increased buffer
cache), whereas Spec-SFS remains limited by the available net-
work bandwidth in the unified interconnect. Finally, our exam-
ination of kernel-level overheads shows that improving I/O path
performance requires dealing not only with TCP and interrupt pro-
cessing costs, but buffer cache management as well.

Thus, building next generation, network-based I/O architec-
tures, requires optimizing I/O latency, reducing network and
buffer cache related processing in the host CPU, and increasing
the network bandwidth to account for consolidation of different
types of traffic. Overall, our work provides valuable insight on
the impact of iSCSI on application server behavior and shows that
there is significant room for improvements in future storage sub-
systems.

108

7. Acknowledgments

We would like to thank the members of the CARV laboratory at
ICS-FORTH for useful discussions. Also, we thankfully acknowl-
edge the support of the European FP6-IST program through the
SIVSS project.

REFERENCES
[1] Linux-iSCSI project. http://linux-iscsi.sourceforge.net.
[2] Linux kernel sources version 2.4.23-pre5. http://www.kernel.org.
[3] Project: Intel iSCSI reference implementation.

http://sourceforge.net/projects/intel-iscsi.
[4] Project: iSCSI enterprise target.

http://sourceforge.net/projects/iscsitarget.
[5] S. Aiken, D. Grunwald, and J. W. Andrew R. Pleszkun. A perfor-

mance analysis of the iSCSI protocol. Apr. 2003.
[6] ANSI. Fibre Channel Protocol (FCP), X3.269:1996. In 11 West 42nd

Street, 13th Floor, New York, NY 10036.
[7] ANSI. SCSI-3 Architecture Model (SAM), X3.270:1996. In 11 West

42nd Street, 13th Floor, New York, NY 10036.
[8] M. F. Brown, J. Hawkins, M. Ostman, and W. Moloney. UMass

Lowell iSCSI Project. http://www.cs.uml.edu/ mbrown/iSCSI.
[9] A. T. BV. Linux iSCSI target implementation.

http://www.ardistech.com/iscsi.
[10] A. Chadda, A. Palekar, R. Russell, and N. Ganapathy. Design, im-

plementation, and performance analysis of the iSCSI protocol for
SCSI over TCP/IP. In Internetworking 2003 International Confer-
ence, June 2003.

[11] I. Dalgic, K. Ozdemir, R. Velpuri, and U. Kukreja. Comparative per-
formance evaluation of iSCSI protocol over metro, local, and wide
area networks. Apr. 2004.

[12] IBM. iSCSI initiator project. http://www-
124.ibm.com/developerworks/projects/naslib.

[13] I. E. T. F. (IETF). iSCSI, version 08. In IP Storage (IPS), Internet
Draft, Document: draft-ietf-ips-iscsi-08.txt, Sept. 2001.

[14] Intel Server Architecture Lab. Iometer: The
I/O Performance Analysis Tool for Servers.
http://developer.intel.com/design/servers/devtools/iometer/.

[15] J. Katcher. PostMark: A New File System Benchmark. http://
www.netapp.com/ tech library/3022.html.

[16] Y. Lu, Farrukh, Noman, and D. H. Du. Simulation study of iSCSI-
based storage system. Apr. 2004.

[17] Mike Brim and George Kola. An analysis of
iSCSI for use in distributed file system design.
http://www.cs.wisc.edu/m̃jbrim/uw/740/paper.pdf.

[18] W. T. Ng, H. Sun, B. Hillyer, E. Shriver, E. Gabber, and B. Ozden.
Obtaining high performance for storage outsourcing. pages 145–
158, Jan. 2002.

[19] A. A. Palekar and R. D. Russell. Design and implementation of a
SCSI target for storage area networks. Technical Report TR 01-01,
University of New Hampshire, May 2001.

[20] S. P. E. C. (SPEC). SFS 3.0. http://www.spec.org/sfs97r1/docs/sfs-
3.0.pdf, 2001.

[21] F. Tomonori and O. Masanori. Performance optimized software im-
plementation of iSCSI. In SNAPPI03, Sept. 2004.

[22] T. P. P. C. (TPC). TPC BENCHMARK H, Standard Specification,
Revision 2.1.0. 777 N. First Street, Suite 600, San Jose, CA 95112-
6311, USA, Aug. 2003.

[23] M. Widenius and D. Axmark. MySQL Reference Manual. O’Reilly
& Associates, Inc., June 2002.

[24] D. Xinidis, M. D. Flouris, and A. Bilas. Virtual timers: Using hard-
ware physical timers for profiling kernel code-paths. Feb. 2005.

[25] H. Xiong, R. Kanagavelu, Y. Zhu, and K. L. Yong. An iSCSI design
and implementation. Apr. 2004.

109

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

